IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt1565f72s.html
   My bibliography  Save this paper

Connectivity of vehicular ad hoc networks with continuous node distribution patterns

Author

Listed:
  • Jin, W L
  • Wang, Bruce

Abstract

The connectivity of vehicular ad hoc networks (VANets) can be affected by the special distribution patterns, usually dependent and non-uniform, of vehicles in a transportation network. In this study, we introduce a new framework for computing the connectivity in a VANet for continuous distribution patterns of communication nodes on a line in a transportation network. Such distribution patterns can be estimated from traffic densities obtained through loop detectors or other detectors. When communication nodes follow homogeneous Poisson distributions, we obtain a new closed-form solution to connectivity; when distribution patterns of communication nodes are given by spatial renewal processes, we derive an approximate closedform solution to the connectivity; and when communication nodes follow non-homogeneous Poisson distributions, we propose a recursive model of connectivity. For a shock-wave traffic, we demonstrate the consistency between analytical results with those simulated with ns-2, acommunication simulator. With the developed models, we also discuss the impacts on connectivity of road-side stations and different distribution patterns of vehicles. Given continuous traffic conditions, the connectivity model could be helpful for designing routing protocols in VANets and implementing vehicle-infrastructure integration systems. Limitations and future research related to this study are discussed in the conclusion section.

Suggested Citation

  • Jin, W L & Wang, Bruce, 2010. "Connectivity of vehicular ad hoc networks with continuous node distribution patterns," University of California Transportation Center, Working Papers qt1565f72s, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt1565f72s
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/1565f72s.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiubin, 2007. "Modeling the process of information relay through inter-vehicle communication," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 684-700, July.
    2. Jin, Wen-Long & Recker, Wilfred W., 2006. "Instantaneous information propagation in a traffic stream through inter-vehicle communication," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 230-250, March.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. Jung, Jaeyoung & Chen, Rex & Jin, Wenlong & Jayakrishnan, R. & Regan, Amelia C, 2010. "An Empirical Study of Inter-Vehicle Communication Performance Using NS-2," University of California Transportation Center, Working Papers qt874253j6, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wen-Long & Recker, Wilfred W. & Wang, Xiubin B., 2016. "Instantaneous multihop connectivity of one-dimensional vehicular ad hoc networks with general distributions of communication nodes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 159-177.
    2. Baiocchi, Andrea, 2016. "Analysis of timer-based message dissemination protocols for inter-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 105-134.
    3. Jin, W L, 2010. "Modeling connectivity of inter-vehicle communication networks along discrete traffic streams," University of California Transportation Center, Working Papers qt2jd4m0ck, University of California Transportation Center.
    4. Ou, Hui & Tang, Tie-Qiao, 2018. "An extended two-lane car-following model accounting for inter-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 260-268.
    5. Wang, Jian & Peeta, Srinivas & Lu, Lili & Li, Tao, 2019. "Multiclass information flow propagation control under vehicle-to-vehicle communication environments," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 96-121.
    6. Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
    7. Soulaymane Kachani & Georgia Perakis, 2009. "A Dynamic Travel Time Model for Spillback," Networks and Spatial Economics, Springer, vol. 9(4), pages 595-618, December.
    8. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    9. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    10. Duong Viet Thong & Aviv Gibali & Mathias Staudigl & Phan Tu Vuong, 2021. "Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters," Networks and Spatial Economics, Springer, vol. 21(3), pages 735-768, September.
    11. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    12. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    13. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    14. So, Stella Kin-Mang, 2010. "Managing City Evacuations," University of California Transportation Center, Working Papers qt23w302h9, University of California Transportation Center.
    15. Taniguchi, Yohei & Nishi, Ryosuke & Ezaki, Takahiro & Nishinari, Katsuhiro, 2015. "Jam-absorption driving with a car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 304-315.
    16. Knoop, Victor L. & Snelder, Maaike & van Zuylen, Henk J. & Hoogendoorn, Serge P., 2012. "Link-level vulnerability indicators for real-world networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 843-854.
    17. Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    19. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    20. Jin, W. L. & Zhang, H. M., 2003. "The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 207-223, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt1565f72s. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.