IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v38y2021i3d10.1007_s00357-021-09386-5.html
   My bibliography  Save this article

A Comparison of Reliability Coefficients for Ordinal Rating Scales

Author

Listed:
  • Alexandra Raadt

    (University of Groningen)

  • Matthijs J. Warrens

    (University of Groningen)

  • Roel J. Bosker

    (University of Groningen)

  • Henk A. L. Kiers

    (University of Groningen)

Abstract

Kappa coefficients are commonly used for quantifying reliability on a categorical scale, whereas correlation coefficients are commonly applied to assess reliability on an interval scale. Both types of coefficients can be used to assess the reliability of ordinal rating scales. In this study, we compare seven reliability coefficients for ordinal rating scales: the kappa coefficients included are Cohen’s kappa, linearly weighted kappa, and quadratically weighted kappa; the correlation coefficients included are intraclass correlation ICC(3,1), Pearson’s correlation, Spearman’s rho, and Kendall’s tau-b. The primary goal is to provide a thorough understanding of these coefficients such that the applied researcher can make a sensible choice for ordinal rating scales. A second aim is to find out whether the choice of the coefficient matters. We studied to what extent we reach the same conclusions about inter-rater reliability with different coefficients, and to what extent the coefficients measure agreement in a similar way, using analytic methods, and simulated and empirical data. Using analytical methods, it is shown that differences between quadratic kappa and the Pearson and intraclass correlations increase if agreement becomes larger. Differences between the three coefficients are generally small if differences between rater means and variances are small. Furthermore, using simulated and empirical data, it is shown that differences between all reliability coefficients tend to increase if agreement between the raters increases. Moreover, for the data in this study, the same conclusion about inter-rater reliability was reached in virtually all cases with the four correlation coefficients. In addition, using quadratically weighted kappa, we reached a similar conclusion as with any correlation coefficient a great number of times. Hence, for the data in this study, it does not really matter which of these five coefficients is used. Moreover, the four correlation coefficients and quadratically weighted kappa tend to measure agreement in a similar way: their values are very highly correlated for the data in this study.

Suggested Citation

  • Alexandra Raadt & Matthijs J. Warrens & Roel J. Bosker & Henk A. L. Kiers, 2021. "A Comparison of Reliability Coefficients for Ordinal Rating Scales," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 519-543, October.
  • Handle: RePEc:spr:jclass:v:38:y:2021:i:3:d:10.1007_s00357-021-09386-5
    DOI: 10.1007/s00357-021-09386-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-021-09386-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-021-09386-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hubert Schouten, 1986. "Nominal scale agreement among observers," Psychometrika, Springer;The Psychometric Society, vol. 51(3), pages 453-466, September.
    2. Christof Schuster & David Smith, 2005. "Dispersion-weighted kappa: An integrative framework for metric and nominal scale agreement coefficients," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 135-146, March.
    3. Hauke Jan & Kossowski Tomasz, 2011. "Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data," Quaestiones Geographicae, Sciendo, vol. 30(2), pages 87-93, June.
    4. Sergio Munoz & Shrikant Bangdiwala, 1997. "Interpretation of Kappa and B statistics measures of agreement," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 105-112.
    5. Matthijs Warrens, 2014. "Corrected Zegers-ten Berge Coefficients Are Special Cases of Cohen’s Weighted Kappa," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 179-193, July.
    6. Robert Fagot, 1993. "A generalized family of coefficients of relational agreement for numerical scales," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 357-370, June.
    7. Matthijs Warrens, 2010. "Inequalities between multi-rater kappas," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 271-286, December.
    8. Matthijs Warrens, 2012. "Some Paradoxical Results for the Quadratically Weighted Kappa," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 315-323, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rutger Oest, 2023. "The Dependence of Chance-Corrected Weighted Agreement Coefficients on the Power Parameter of the Weighting Scheme: Analysis and Measurement," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 554-579, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthijs J. Warrens, 2021. "Kappa coefficients for dichotomous-nominal classifications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 193-208, March.
    2. Tarald O. Kvålseth, 2018. "An Alternative Interpretation of the Linearly Weighted Kappa Coefficients for Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 618-627, September.
    3. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    4. Matthijs J. Warrens & Alexandra Raadt, 2019. "Properties of Bangdiwala’s B," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 481-493, June.
    5. Agumas Alamirew Mebratu, 2024. "Theoretical foundations of voluntary tax compliance: evidence from a developing country," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-8, December.
    6. Alex Bara & Pierre LeRoux, 2018. "Technology, Financial Innovations and Bank Behavior in a Low Income Country," Journal of Economics and Behavioral Studies, AMH International, vol. 10(4), pages 221-234.
    7. Javier García López & Raffaele Sisto & Javier Benayas & Álvaro de Juanes & Julio Lumbreras & Carlos Mataix, 2021. "Assessment of the Results and Methodology of the Sustainable Development Index for Spanish Cities," Sustainability, MDPI, vol. 13(11), pages 1-29, June.
    8. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    9. Matthijs J. Warrens, 2014. "Power Weighted Versions of Bennett, Alpert, and Goldstein’s," Journal of Mathematics, Hindawi, vol. 2014, pages 1-9, December.
    10. Adriana Gómez-Cabrera & Amalia Sanz-Benlloch & Laura Montalban-Domingo & Jose Luis Ponz-Tienda & Eugenio Pellicer, 2020. "Identification of Factors Affecting the Performance of Rural Road Projects in Colombia," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    11. Bouchra Zellou & Hassane Rahali, 2017. "Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 1-29, March.
    12. Judit Bar-Ilan & Mark Levene, 2015. "The hw-rank: an h-index variant for ranking web pages," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2247-2253, March.
    13. Patrik Silva & Lin Li, 2020. "Urban Crime Occurrences in Association with Built Environment Characteristics: An African Case with Implications for Urban Design," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    14. Ma Zhong & Rong Xu & Xinyi Liao & Shuangli Zhang, 2019. "Do CSR Ratings Converge in China? A Comparison Between RKS and Hexun Scores," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    15. Sun, Long Long & Hu, Ya Peng & Zhu, Chen Ping, 2023. "Scaling invariance in domestic passenger flight delays in the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    16. Matthijs Warrens, 2010. "Inequalities between multi-rater kappas," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 271-286, December.
    17. Sebastián Feu & Javier García-Rubio & María de Gracia Gamero & Sergio J Ibáñez, 2019. "Task planning for sports learning by physical education teachers in the pre-service phase," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-18, March.
    18. Loredana Antronico & Roberto Coscarelli & Francesco De Pascale & Dante Di Matteo, 2020. "Climate Change and Social Perception: A Case Study in Southern Italy," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    19. Avinash Srikanta Murthy & Norhafiz Azis & Salem Al-Ameri & Mohd Fairouz Mohd Yousof & Jasronita Jasni & Mohd Aizam Talib, 2018. "Investigation of the Effect of Winding Clamping Structure on Frequency Response Signature of 11 kV Distribution Transformer," Energies, MDPI, vol. 11(9), pages 1-13, September.
    20. Upton, Joanna & Constenla-Villoslada, Susana & Barrett, Christopher B., 2022. "Caveat utilitor: A comparative assessment of resilience measurement approaches," Journal of Development Economics, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:38:y:2021:i:3:d:10.1007_s00357-021-09386-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.