IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v31y2022i6d10.1007_s10726-022-09794-x.html
   My bibliography  Save this article

Combination Generalized Grey Target Decision Method for Mixed Attributes Based on Zero-Sum Game Theory

Author

Listed:
  • Jinshan Ma

    (Henan Polytechnic University)

  • Zhiqi Yuan

    (Henan Polytechnic University)

  • Guanghua Zheng

    (Henan Polytechnic University)

  • Fushan Lang

    (Henan Polytechnic University)

Abstract

Generalized grey target decision method (GGTDM) for mixed attributes has different decision-making bases (DMBs) owing to different mechanisms. A combination GGTDM based on zero-sum game theory is proposed to obtain the desirable decision-making effect by fully using the characteristics and information of different DMB based GGTDMs. First, two players are set to compete in the zero-sum game. One player takes different DMB based GGTDMs as the set of his strategies, while the other player adopts the alternatives as the other player’s set of strategies. Then, the ranking values of all alternatives decided by different GGTDMs are converted into scores by equivalent way, and the scores are regarded as the payoffs of the two players. Next, the zero-sum game based linear programming model is built to obtain the solutions when reaching the Nash equilibrium. Finally, the combination decision-making values of all alternatives can be calculated based on the strategy solutions for all GGTDMs. And the decision making is based on the value with which the smaller the better. The application analysis verifies that the proposed method has its feasible and can make full use of the advantages of different DMB based GGTDMs and avoid their shortcomings.

Suggested Citation

  • Jinshan Ma & Zhiqi Yuan & Guanghua Zheng & Fushan Lang, 2022. "Combination Generalized Grey Target Decision Method for Mixed Attributes Based on Zero-Sum Game Theory," Group Decision and Negotiation, Springer, vol. 31(6), pages 1121-1143, December.
  • Handle: RePEc:spr:grdene:v:31:y:2022:i:6:d:10.1007_s10726-022-09794-x
    DOI: 10.1007/s10726-022-09794-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-022-09794-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-022-09794-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarbast Moslem & Muhammet Gul & Danish Farooq & Erkan Celik & Omid Ghorbanzadeh & Thomas Blaschke, 2020. "An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    2. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    3. Lingjie Sun & Yingyi Liu & Boyang Zhang & Yuwei Shang & Haiwen Yuan & Zhao Ma, 2016. "An Integrated Decision-Making Model for Transformer Condition Assessment Using Game Theory and Modified Evidence Combination Extended by D Numbers," Energies, MDPI, vol. 9(9), pages 1-22, August.
    4. Jinshan Ma & Changsheng Ji, 2014. "Generalized Grey Target Decision Method for Mixed Attributes Based on Connection Number," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-8, April.
    5. Liao, Huchang & Wu, Xingli & Mi, Xiaomei & Herrera, Francisco, 2020. "An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule," Omega, Elsevier, vol. 93(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    2. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    3. Wanying Zhong & Yue Wang, 2022. "A study on the spatial and temporal variation of urban integrated vulnerability in Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2855-2882, December.
    4. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    5. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    6. Xianhui Mao & Ankui Hu & Rui Zhao & Fei Wang & Mengkun Wu, 2023. "Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    7. Zhiqiang Zhang & Ling Li & Qiuyu Guo, 2022. "The Interactive Relationships between the Tourism-Transportation-Ecological Environment System of Provinces along the ‘Silk Road Economic Belt’ in China," Sustainability, MDPI, vol. 14(5), pages 1-33, March.
    8. Qingfu Li & Huade Zhou & Qiang Ma & Linfang Lu, 2021. "Evaluation of Serviceability of Canal Lining Based on AHP–Simple Correlation Function Method–Cloud Model: A Case Study in Henan Province, China," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
    9. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Jinyang Deng, 2019. "How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China," IJERPH, MDPI, vol. 16(4), pages 1-18, February.
    10. Hong Ngoc Nguyen & Hiroatsu Fukuda & Minh Nguyet Nguyen, 2024. "Assessment of the Susceptibility of Urban Flooding Using GIS with an Analytical Hierarchy Process in Hanoi, Vietnam," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    11. Amanda Melendez & David Caballero-Russi & Mariantonieta Gutierrez Soto & Luis Felipe Giraldo, 2022. "Computational models of community resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1121-1152, March.
    12. Wang, Delu & Tong, Xian & Wang, Yadong, 2020. "An early risk warning system for Outward Foreign Direct Investment in Mineral Resource-based enterprises using multi-classifiers fusion," Resources Policy, Elsevier, vol. 66(C).
    13. Min Xue & Chao Fu & Shanlin Yang, 2022. "A comparative analysis of probabilistic linguistic preference relations and distributed preference relations for decision making," Fuzzy Optimization and Decision Making, Springer, vol. 21(1), pages 71-97, March.
    14. Rui Ding & Kai Yu & Ziwu Fan & Jiaying Liu, 2022. "Study and Application of Urban Aquatic Ecosystem Health Evaluation Index System in River Network Plain Area," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    15. Liu, Xianliang & Ma, Yonghao, 2021. "A method to analyze the rank reversal problem in the ELECTRE II method," Omega, Elsevier, vol. 102(C).
    16. Daniel Seaberg & Laura Devine & Jun Zhuang, 2017. "A review of game theory applications in natural disaster management research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1461-1483, December.
    17. Yudan Dou & Xiaolong Xue & Zebin Zhao & Xiaowei Luo & Ankang Ji & Ting Luo, 2018. "Multi-Index Evaluation for Flood Disaster from Sustainable Perspective: A Case Study of Xinjiang in China," IJERPH, MDPI, vol. 15(9), pages 1-20, September.
    18. Danish Farooq & Sarbast Moslem, 2022. "Estimating Driver Behavior Measures Related to Traffic Safety by Investigating 2-Dimensional Uncertain Linguistic Data—A Pythagorean Fuzzy Analytic Hierarchy Process Approach," Sustainability, MDPI, vol. 14(3), pages 1-21, February.
    19. Yongfei Fu & Yuyu Liu & Shiguo Xu & Zhenghe Xu, 2022. "Assessment of a Multifunctional River Using Fuzzy Comprehensive Evaluation Model in Xiaoqing River, Eastern China," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    20. Mo Wang & Xiaoping Fu & Dongqing Zhang & Furong Chen & Jin Su & Shiqi Zhou & Jianjun Li & Yongming Zhong & Soon Keat Tan, 2023. "Urban Flooding Risk Assessment in the Rural-Urban Fringe Based on a Bayesian Classifier," Sustainability, MDPI, vol. 15(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:31:y:2022:i:6:d:10.1007_s10726-022-09794-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.