IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i8d10.1007_s10584-023-03578-1.html
   My bibliography  Save this article

Impact of climate change on human health concerning climate-induced natural disaster: evidence from an eastern Indian state

Author

Listed:
  • Jyotirekha Purohit

    (Women’s College)

  • Himanshu Sekhar Rout

    (Utkal University)

Abstract

Human health in Odisha is directly vulnerable to climate change in the form of mortality as a result of climate-induced natural disasters (CINDs) and heatwaves. More frequent and intensified CIND has become an inevitable part of the state and its impact on human health has been detrimental. The magnitude of the impact of climate change on human health depends on the vulnerability and adaptation approaches of the state. The objectives of the paper are to study the changing pattern of climatic variability over 20 years in the state and to analyze the direct impact of climate change on human health in Odisha. Linear trend analysis is performed for annual average, pre-monsoon, monsoon, and post-monsoon rainfall as well as annual maximum and minimum temperature and for the heatwave period to show the changing pattern of climate in the state over 20 years. Regression analysis is performed between the indexed value of vulnerability and adaptation coefficients considered in the study as independent variables and mortality due to CIND as the dependent variable to analyze the impact of climate change on human health in the state. Also, correlation analysis is conducted to show the association between heatwave mortality and the maximum temperature of the heatwave period. The rainfall trend of the state for 20 years from 2000 to 2020 is found to increase in pre-monsoon and post-monsoon periods, while the annual average rainfall of the state for 20 years is slightly increasing and the monsoon period rainfall has remained consistent throughout the years. The annual maximum and minimum temperature and the heatwave period are found to be increasing. The regression analysis has shown a significant positive relationship between vulnerability coefficients and mortality as a direct impact of CIND on human health, whereas adaptation coefficients exhibit negative relation with it. Also, there is a moderate but significant association between the maximum temperature of the heatwave period with heatwave mortality. Odisha has been vulnerable to climate change during 2000–2020 as indicated by the high vulnerability score compared to the adaptation score for each year. However, years with better adaptive approaches, having high adaptive index scores, experienced less human mortality even with high vulnerability scores.

Suggested Citation

  • Jyotirekha Purohit & Himanshu Sekhar Rout, 2023. "Impact of climate change on human health concerning climate-induced natural disaster: evidence from an eastern Indian state," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:8:d:10.1007_s10584-023-03578-1
    DOI: 10.1007/s10584-023-03578-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03578-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03578-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saudamini Das & Stephen C. Smith, 2012. "Awareness As An Adaptation Strategy For Reducing Mortality From Heat Waves: Evidence From A Disaster Risk Management Program In India," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-29.
    2. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    2. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    3. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    4. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    5. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    6. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    7. Arun S. Malik & Stephen C. Smith, 2012. "Adaptation To Climate Change In Low-Income Countries: Lessons From Current Research And Needs From Future Research," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-22.
    8. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    9. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    10. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    11. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    12. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    13. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    14. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    15. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    16. Shinji Otani & Satomi Funaki Ishizu & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2021. "The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    17. Laetitia H. M. Schmitt & Hilary M. Graham & Piran C. L. White, 2016. "Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    18. Neha Sinha, 2012. "Climate Change Issues and Global Negotiations," Insight on Africa, , vol. 4(1), pages 35-57, January.
    19. Liukuan Zhang & Xiaoxiao Shi & Qing Chang, 2022. "Exploring Adaptive UHI Mitigation Solutions by Spatial Heterogeneity of Land Surface Temperature and Its Relationship to Urban Morphology in Historical Downtown Blocks, Beijing," Land, MDPI, vol. 11(4), pages 1-24, April.
    20. Nicholas D. Kim & Matthew D. Taylor & Jonathan Caldwell & Andrew Rumsby & Olivier Champeau & Louis A. Tremblay, 2020. "Development and Deployment of a Framework to Prioritize Environmental Contamination Issues," Sustainability, MDPI, vol. 12(22), pages 1-23, November.

    More about this item

    Keywords

    Climate change; CIND; Heatwave; Mortality; Vulnerability; Adaptation; Human health;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:8:d:10.1007_s10584-023-03578-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.