IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03045-x.html
   My bibliography  Save this article

Topological perturbations on resilience of the world trade competition network

Author

Listed:
  • Zhao Li

    (Hangzhou Normal University)

  • Ren Zhuoming

    (Hangzhou Normal University)

  • Zhao Ziyi

    (Hangzhou Normal University)

  • Weng Tongfeng

    (Hangzhou Normal University)

Abstract

Network resilience refers to a system’s capability to adapt its functions to ensure continuity of essential operations amidst external environmental shifts or internal failures. The resilience of the world trade network faces structural disturbances, such as dynamic changes in the internal and external environments, increasing trade barriers and changes in competition between countries, which is an issue worth exploring. In this study, we introduce a world trade competition network that reflects export competition between two countries. We employ a network dynamics model to assess the resilience of this global trade competition network, focusing on the influence of topological disturbances. The eight distinct types of topological perturbations analyzed include nodes representing countries, links symbolizing inter-country competition, and weights indicative of the intensity of this competition. Our findings reveal that the intensity of export competition between countries significantly influences the resilience of the global trade competition network. Specifically, experimental outcomes indicate that network resilience declines more rapidly when nodes are removed sequentially based on higher weighted degrees than when based on lower ones. Similarly, in link perturbation scenarios, removing links associated with higher competition intensity first leads to a more precipitous decrease in network resilience when the network is otherwise stable. Furthermore, in weight alteration scenarios, networks maintaining a higher ratio of high-intensity competition links demonstrate greater stability compared to those with a reduced proportion of such links. Consequently, sustaining a robust level of export competition between countries is crucial for preserving the stability of the network.

Suggested Citation

  • Zhao Li & Ren Zhuoming & Zhao Ziyi & Weng Tongfeng, 2024. "Topological perturbations on resilience of the world trade competition network," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03045-x
    DOI: 10.1057/s41599-024-03045-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03045-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03045-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    2. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    4. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    5. Zhuo-Ming Ren & An Zeng & Yi-Cheng Zhang, 2020. "Bridging nestedness and economic complexity in multilayer world trade networks," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-8, December.
    6. Hao, Xiaoqing & An, Haizhong & Sun, Xiaoqi & Zhong, Weiqiong, 2018. "The import competition relationship and intensity in the international iron ore trade: From network perspective," Resources Policy, Elsevier, vol. 57(C), pages 45-54.
    7. Serguei Saavedra & Rudolf P. Rohr & Luis J. Gilarranz & Jordi Bascompte, 2014. "How structurally stable are global socioeconomic systems?," Papers 1408.6973, arXiv.org.
    8. Manuel Sebastian Mariani & Zhuo-Ming Ren & Jordi Bascompte & Claudio Juan Tessone, 2019. "Nestedness in complex networks: Observation, emergence, and implications," Papers 1905.07593, arXiv.org.
    9. Bishop, Alex & Mateos-Garcia, Juan, 2019. "Exploring the Link Between Economic Complexity and Emergent Economic Activities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 249, pages 47-58, August.
    10. Yi Yi Mon & Seunghoo Lim & Makoto Kakinaka, 2019. "Multiplex Relations between States: Coevolution of Trade Agreements and Political Alliances," Sustainability, MDPI, vol. 11(14), pages 1-24, July.
    11. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    12. Uzi Harush & Baruch Barzel, 2017. "Dynamic patterns of information flow in complex networks," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    13. Hayakawa, Kazunobu & Ito, Keiko & Fukao, Kyoji & Deseatnicov, Ivan, 2023. "The impact of the strengthening of export controls on Japanese exports of dual-use goods," International Economics, Elsevier, vol. 174(C), pages 160-179.
    14. Rendón de la Torre, Stephanie & Kalda, Jaan & Kitt, Robert & Engelbrecht, Jüri, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 18-27.
    15. Wen, Xing-Zhang & Zheng, Yue & Du, Wen-Li & Ren, Zhuo-Ming, 2023. "Regulating clustering and assortativity affects node centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Li, Xiaotong & Zhang, Hua & Zhou, Xuanru & Zhong, Weiqiong, 2022. "Research on the evolution of the global import and export competition network of chromium resources from the perspective of the whole industrial chain," Resources Policy, Elsevier, vol. 79(C).
    17. Wang, Wenya & Fan, Liwei & Li, Zhenfu & Zhou, Peng & Chen, Xue, 2021. "Measuring dynamic competitive relationship and intensity among the global coal importing trade," Applied Energy, Elsevier, vol. 303(C).
    18. Hayakawa, Kazunobu & Mukunoki, Hiroshi, 2021. "The impact of COVID-19 on international trade: Evidence from the first shock," Journal of the Japanese and International Economies, Elsevier, vol. 60(C).
    19. Baruch Barzel & Yang-Yu Liu & Albert-László Barabási, 2015. "Constructing minimal models for complex system dynamics," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    20. Xiaojin Yuan & Chunbao Ge & Yapan Liu & Na Li & Ying Wang, 2022. "Evolution of Global Crude Oil Trade Network Structure and Resilience," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Kuhn, Moritz & Luo, Jinfeng & Manovskii, Iourii & Qiu, Xincheng, 2023. "Coordinated firm-level work processes and macroeconomic resilience," Journal of Monetary Economics, Elsevier, vol. 137(C), pages 107-127.
    4. Chao, Xiangrui & Ran, Qin & Chen, Jia & Li, Tie & Qian, Qian & Ergu, Daji, 2022. "Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions," International Review of Financial Analysis, Elsevier, vol. 80(C).
    5. Chen, Aimin & Wang, Pei & Zhou, Tianshou & Tian, Tianhai, 2022. "Balance of positive and negative regulation for trade-off between efficiency and resilience of high-dimensional networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Yu, Yu & Ma, Daipeng & Qian, Yingmiao, 2023. "A resilience measure for the international nickel trade network," Resources Policy, Elsevier, vol. 86(PA).
    7. Duan, Dongli & Bai, Xue & Rong, Yisheng & Hou, Gege & Hang, Jiale, 2022. "Controlling of nonlinear dynamical networks based on decoupling and re-coupling method," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Duan, Dongli & Yan, Qi & Rong, Yisheng & Hou, Gege, 2022. "Predicting the cascading failure of dynamical networks based on a new dimension reduction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Zhuo-Ming Ren & An Zeng & Yi-Cheng Zhang, 2020. "Bridging nestedness and economic complexity in multilayer world trade networks," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-8, December.
    11. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Duan, Wenqi & Madasi, Joseph David & Khurshid, Adnan & Ma, Dan, 2022. "Industrial structure conditions economic resilience," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    15. Hou, Gege & Bai, Lei & Si, Shubin, 2023. "Ecosystem resilience and stability analysis against alien species invasion patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    16. Liu, Siyuan & Zhang, Chunyan & Li, Kun & Zhang, Jianlei, 2022. "Exploring the inducement for social dilemma and cooperation promotion mechanisms in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Zhang, Hongwei & Wang, Xinyi & Tang, Jing & Guo, Yaoqi, 2022. "The impact of international rare earth trade competition on global value chain upgrading from the industrial chain perspective," Ecological Economics, Elsevier, vol. 198(C).
    18. Cary, Michael, 2023. "Climate policy boosts trade competitiveness: Evidence from timber trade networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    20. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03045-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.