IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i3d10.1007_s10614-023-10389-0.html
   My bibliography  Save this article

Impact of Climate Variables Change on the Yield of Wheat and Rice Crops in Iran (Application of Stochastic Model Based on Monte Carlo Simulation)

Author

Listed:
  • Akram Javadi

    (University of Tabriz)

  • Mohammad Ghahremanzadeh

    (University of Tabriz)

  • Maria Sassi

    (University of Pavia)

  • Ozra Javanbakht

    (Urmia University)

  • Boballah Hayati

    (University of Tabriz)

Abstract

This study aims to predict the yield of two strategic crops in Iran; wheat and rice, under climate scenarios that indicate probable changes in climate variables. It implemented by a stochastic model based on the Monte Carlo method. This model were estimated based on historical data from 1988 to 2019 for precipitation and temperature provided possible changes in the pattern of and their probability of occurrence. The results show that rain-fed wheat, irrigated wheat and rice yields decrease by 42%, 29% and 21% respectively in the average scenario. Therefore, policy makers should try to make the right decisions to increase the production of the country's strategic crops. R&D management to introduce drought-tolerant varieties, use of modern irrigation systems and use of low-volume irrigation methods are some of the proposed solutions to mitigate the effects of climate change.

Suggested Citation

  • Akram Javadi & Mohammad Ghahremanzadeh & Maria Sassi & Ozra Javanbakht & Boballah Hayati, 2024. "Impact of Climate Variables Change on the Yield of Wheat and Rice Crops in Iran (Application of Stochastic Model Based on Monte Carlo Simulation)," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 983-1000, March.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:3:d:10.1007_s10614-023-10389-0
    DOI: 10.1007/s10614-023-10389-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10389-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10389-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evans, Elizabeth M. & Lee, David R. & Boisvert, Richard N. & Arce, Blanca & Steenhuis, Tammo S. & Prano, Mauricio & Poats, Susan V., 2003. "Achieving efficiency and equity in irrigation management: an optimization model of the El Angel watershed, Carchi, Ecuador," Agricultural Systems, Elsevier, vol. 77(1), pages 1-22, July.
    2. Sassi, Maria & Cardaci, Alberto, 2013. "Impact of rainfall pattern on cereal market and food security in Sudan: Stochastic approach and CGE model," Food Policy, Elsevier, vol. 43(C), pages 321-331.
    3. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    4. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
    2. Tetsuji Tanaka & Jin Guo & Naruto Hiyama & Baris Karapinar, 2022. "Optimality Between Time of Estimation and Reliability of Model Results in the Monte Carlo Method: A Case for a CGE Model," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 151-176, January.
    3. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    4. William D. Nordhaus & Robert Mendelsohn, 1999. "The Impact of Global Warming on Agriculture: A Ricardian Analysis: Reply," American Economic Review, American Economic Association, vol. 89(4), pages 1046-1048, September.
    5. Jean-Marc Montaud, 2019. "Agricultural Drought Impacts on Crops Sector and Adaptation Options in Mali: a Macroeconomic Computable General Equilibrium Analysis," Working papers of CATT hal-02141050, HAL.
    6. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    7. Mukherjee, Manisha, 2022. "Climate change and migration: Reviewing the role of access to agricultural adaptation measures," MERIT Working Papers 2022-039, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    8. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    9. Jean-Marc MONTAUD, 2019. "Agricultural Drought Impacts on Crops Sector and Adaptation Options in Mali: a Macroeconomic Computable General Equilibrium Analysis," Working Papers 2018-2019_5, CATT - UPPA - Université de Pau et des Pays de l'Adour, revised Feb 2019.
    10. Sanjeev Kumar & Ajay K. Singh, 2023. "Modeling the effects of climate change on agricultural productivity: evidence from Himachal Pradesh, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 521-548, June.
    11. Chiarity Zetem Chiambah & Cordelia G. Kometa, 2022. "Rainfall Variability and Food Crop Vulnerability in Ndu Sub-Division, North West Region of Cameroon," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 11(3), pages 1-39, September.
    12. Song, Jingyu & Delgado, Michael & Preckel, Paul & Villoria, Nelson, 2016. "Pixel Level Cropland Allocation and Marginal Impacts of Biophysical Factors," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235327, Agricultural and Applied Economics Association.
    13. A. Patt, 1997. "Economists and Ecologists: Different Frames of Reference for Global Climate Change," Working Papers ir97056, International Institute for Applied Systems Analysis.
    14. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    15. Brock, W. & Xepapadeas, A., 2017. "Climate change policy under polar amplification," European Economic Review, Elsevier, vol. 99(C), pages 93-112.
    16. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    17. Brockhaus, Jan & Huang, Jikun & Hu, Jiliang & Kalkuhl, Matthias & von Braun, Joachim & Yang, Guolei, 2015. "Rice, wheat, and corn supply response in China," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205988, Agricultural and Applied Economics Association.
    18. Montaud, Jean-Marc & Pecastaing, Nicolas & Tankari, Mahamadou, 2017. "Potential socio-economic implications of future climate change and variability for Nigerien agriculture: A countrywide dynamic CGE-Microsimulation analysis," Economic Modelling, Elsevier, vol. 63(C), pages 128-142.
    19. Onno J. Kuik & Barbara Bucher & Michela Catenacci & Etem Karakaya & Richard S.J. Tol, 2006. "Methodological aspects of recent climate change damage cost studies," Working Papers FNU-122, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2006.
    20. Schönhart, Martin & Mitter, Hermine & Schmid, Erwin & Heinrich, Georg & Gobiet, Andreas, 2014. "Integrated Analysis of Climate Change Impacts and Adaptation Measures in Austrian Agriculture," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:3:d:10.1007_s10614-023-10389-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.