IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i4d10.1007_s10614-022-10311-0.html
   My bibliography  Save this article

A Novel Prediction Model: ELM-ABC for Annual GDP in the Case of SCO Countries

Author

Listed:
  • Xiaohan Xu

    (University of Malaya)

  • Roy Anthony Rogers

    (University of Malaya)

  • Mario Arturo Ruiz Estrada

    (University of Malaya)

Abstract

With the development of economic and technologies, the trend of annual Gross Domestic Product (GDP) and carbon dioxide (CO2) emission changes with time passes. The relationship between economic growth and carbon dioxide emissions is considered as one of the most important empirical relationships. In this study, we focus on the member of Shanghai Cooperation Organization, including China, Russia, India, and Pakistan and collect CO2 emission and annual GDP from 1969 to 2014. The statistical methods and tests are used to find the relationship between annual GDP and CO2 emission in these countries. Based on relationship between annual and CO2 emission, a novel multi-step prediction algorithm called Extreme Learning Machine with Artificial Bee Colony (ELM-ABC) is proposed for forecasting annual GDP based on CO2 emission and historical GDP features. According to the experimental results, it proved that the proposed model had a super forecasting ability in GDP prediction and it could predict ten-year future annual GDP for the corresponding countries. Moreover, the forecasting results showed that the annual GDP of China and Pakistan will continue to grow but growth will slow after 2025. The annual GDP in India will exhibit unstable growth. The trend of Russia will follow the pattern between 2010 and 2016.

Suggested Citation

  • Xiaohan Xu & Roy Anthony Rogers & Mario Arturo Ruiz Estrada, 2023. "A Novel Prediction Model: ELM-ABC for Annual GDP in the Case of SCO Countries," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1545-1566, December.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10311-0
    DOI: 10.1007/s10614-022-10311-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10311-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10311-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pao, Hsiao-Tien & Yu, Hsiao-Cheng & Yang, Yeou-Herng, 2011. "Modeling the CO2 emissions, energy use, and economic growth in Russia," Energy, Elsevier, vol. 36(8), pages 5094-5100.
    2. Zixian Liu & Guansan Du & Shuai Zhou & Haifeng Lu & Han Ji, 2022. "Analysis of Internet Financial Risks Based on Deep Learning and BP Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1481-1499, April.
    3. Sahbi Farhani & Jaleleddine Ben Rejeb, 2012. "Energy Consumption, Economic Growth and CO2 Emissions: Evidence from Panel Data for MENA Region," International Journal of Energy Economics and Policy, Econjournals, vol. 2(2), pages 71-81.
    4. Mark Heil & Thomas Selden, 1999. "Panel stationarity with structural breaks: carbon emissions and GDP," Applied Economics Letters, Taylor & Francis Journals, vol. 6(4), pages 223-225.
    5. Khosravi, A. & Machado, L. & Nunes, R.O., 2018. "Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil," Applied Energy, Elsevier, vol. 224(C), pages 550-566.
    6. Elmira Emsia & Cagay Coskuner, 2016. "Economic Growth Prediction Using Optimized Support Vector Machines," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 453-462, October.
    7. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    8. Bismark Ameyaw & Li Yao, 2018. "Analyzing the Impact of GDP on CO 2 Emissions and Forecasting Africa’s Total CO 2 Emissions with Non-Assumption Driven Bidirectional Long Short-Term Memory," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cowan, Wendy N. & Chang, Tsangyao & Inglesi-Lotz, Roula & Gupta, Rangan, 2014. "The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries," Energy Policy, Elsevier, vol. 66(C), pages 359-368.
    2. P. Srinivasan & Inder Siddanth Ravindra, 2015. "Causality among Energy Consumption, CO2 Emission, Economic Growth and Trade," Foreign Trade Review, , vol. 50(3), pages 168-189, August.
    3. Kais Saidi & Mohammad Mafizur Rahman, 2021. "The link between environmental quality, economic growth, and energy use: new evidence from five OPEC countries," Environment Systems and Decisions, Springer, vol. 41(1), pages 3-20, March.
    4. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    5. Ahmad, Najid & Du, Liangsheng, 2017. "Effects of energy production and CO2 emissions on economic growth in Iran: ARDL approach," Energy, Elsevier, vol. 123(C), pages 521-537.
    6. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    7. Salahuddin, Mohammad & Gow, Jeff, 2014. "Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries," Energy, Elsevier, vol. 73(C), pages 44-58.
    8. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    9. Maxwell Chukwudi Udeagha & Nicholas Ngepah, 2022. "Disaggregating the environmental effects of renewable and non-renewable energy consumption in South Africa: fresh evidence from the novel dynamic ARDL simulations approach," Economic Change and Restructuring, Springer, vol. 55(3), pages 1767-1814, August.
    10. Tang, Chor Foon & Tan, Bee Wah, 2015. "The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam," Energy, Elsevier, vol. 79(C), pages 447-454.
    11. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    12. O.S. Mariev & N.B. Davidson & O.S. Emelianova, 2020. "The Impact of Urbanization on Carbon Dioxide Emissions in the Regions of Russia," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 19(3), pages 286-309.
    13. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    14. Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    15. Luis A. Gil-Alana & Juncal Cunado & Rangan Gupta, 2017. "Persistence, Mean-Reversion and Non-linearities in $$\hbox {CO2}$$ CO2 Emissions: Evidence from the BRICS and G7 Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 869-883, August.
    16. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    17. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    18. Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán, 2021. "Influence of Population Income on Energy Consumption and CO 2 Emissions in Buildings of Cities," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    19. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    20. Ahmed Samour & Joshua Chukwuma Onwe & Nasiru Inuwa & Muhammad Imran, 2024. "Insurance market development, renewable energy, and environmental quality in the UAE: Novel findings from a bootstrap ARDL test," Energy & Environment, , vol. 35(2), pages 610-627, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10311-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.