IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v178y2023ics0191261523001595.html
   My bibliography  Save this article

The economics of speed choice and control in the presence of driverless vehicle cruising and parking-as-a-substitute-for-cruising

Author

Listed:
  • Tscharaktschiew, Stefan
  • Reimann, Felix

Abstract

The capability of self-driving cars to relocate occupant-free is suggested to become one of the most disruptive yet beneficial features in the era of fully autonomous vehicles (FAVs). One relocation option is cruising: Once arriving at the destination, a traveler may instruct her FAV to circle around to bridge the time span between drop-off and pick-up, implying no need to park at all. This seems promising, given the various inefficiencies associated with parking. In this paper we show that driverless vehicle cruising is accompanied by its own inefficiency and, thus, should be a major issue of concern. By developing and applying an integrated economic equilibrium speed and parking choice model, we identify the counterpart of the classical (negative) cruising-for-parking externality in the world of non-autonomous vehicles, namely a (positive) speeding-when-cruising externality that may occur in the era of self-driving cars. The externality emerges because driverless vehicle cruising entails moving at very low speed, thereby imposing congestion on regular (non-cruising) traffic. We show that when not accounted for by cruising FAVs themselves (e.g.via a Pigouvian speed subsidy), not corrected through regulation (e.g.via speed control) or planning (e.g.via dedicated lanes), the traffic system fails to achieve a socially optimal outcome. When parking-as-a-substitute-for-cruising is feasible and properly priced, a welfare-maximizing speed regulator would enforce cruising speeds that deter travelers from choosing inefficient cruising. In this case, welfare is improved and parking would be even socially desirable (at least in the short term). However, when parking is free and parking externalities are substantial, the transport system features too many parkers, but to limit the efficiency losses in the parking market, socially optimal speed regulation enables cruising too. In that case, the result is a huge welfare loss even with regulation stemming from traditional cruising-for-parking induced by parkers, and road congestion caused by cruisers. Our findings support the idea of adopting economic instruments, planning tools, command-and-control approaches, and parking-as-a-substitute-for-cruising to tackle the potential inefficiencies resulting from driverless vehicle cruising, but also underscore the inappropriateness of parking-as-a-substitute-for-cruising when it is heavily underpriced.

Suggested Citation

  • Tscharaktschiew, Stefan & Reimann, Felix, 2023. "The economics of speed choice and control in the presence of driverless vehicle cruising and parking-as-a-substitute-for-cruising," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transb:v:178:y:2023:i:c:s0191261523001595
    DOI: 10.1016/j.trb.2023.102834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523001595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verhoef, Erik T. & Rouwendal, Jan & Rietveld, Piet, 1999. "Congestion Caused by Speed Differences," Journal of Urban Economics, Elsevier, vol. 45(3), pages 533-556, May.
    2. Lamotte, Raphaël & de Palma, André & Geroliminis, Nikolas, 2017. "On the use of reservation-based autonomous vehicles for demand management," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 205-227.
    3. Ostermeijer, Francis & Koster, Hans & Nunes, Leonardo & van Ommeren, Jos, 2022. "Citywide parking policy and traffic: Evidence from Amsterdam," Journal of Urban Economics, Elsevier, vol. 128(C).
    4. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    5. Geroliminis, Nikolas, 2015. "Cruising-for-parking in congested cities with an MFD representation," Economics of Transportation, Elsevier, vol. 4(3), pages 156-165.
    6. Anderson, Simon P. & de Palma, Andre, 2004. "The economics of pricing parking," Journal of Urban Economics, Elsevier, vol. 55(1), pages 1-20, January.
    7. Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 64-88.
    8. Millard-Ball, Adam, 2019. "The autonomous vehicle parking problem," Transport Policy, Elsevier, vol. 75(C), pages 99-108.
    9. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    10. Jos Van Ommeren & Joyce Dargay, 2006. "The Optimal Choice of Commuting Speed: Consequences for Commuting Time, Distance and Costs," Journal of Transport Economics and Policy, University of Bath, vol. 40(2), pages 279-296, May.
    11. Cokyasar, Taner & Larson, Jeffrey, 2020. "Optimal assignment for the single-household shared autonomous vehicle problem," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 98-115.
    12. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    13. Dementyeva, Maria & Verhoef, Erik T., 2016. "Miles, speed, and technology: Traffic safety under oligopolistic insurance," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 147-162.
    14. Verhoef, Erik T. & Rouwendal, Jan, 2004. "A behavioural model of traffic congestion: Endogenizing speed choice, traffic safety and time losses," Journal of Urban Economics, Elsevier, vol. 56(3), pages 408-434, November.
    15. Erick Guerra & Eric A. Morris, 2018. "Cities, Automation, and the Self-parking Elephant in the Room," Planning Theory & Practice, Taylor & Francis Journals, vol. 19(2), pages 291-297, March.
    16. Wolff, Hendrik, 2014. "Value of time: Speeding behavior and gasoline prices," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 71-88.
    17. White, Mark D., 2008. "Time, speeding behavior, and optimal penalties," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 37(1), pages 384-399, February.
    18. Tian, Zhihui & Feng, Tao & Yao, Baozhen & Hu, Yan & Zhang, Jing, 2023. "Where to park an autonomous vehicle? Results of a stated choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    19. Jan Rouwendal & Erik Verhoef & Piet Rietveld & Bert Zwart, 2002. "A Stochastic Model of Congestion Caused by Speed Differences," Journal of Transport Economics and Policy, University of Bath, vol. 36(3), pages 407-445, September.
    20. Eren Inci & Jos van Ommeren & Martijn Kobus, 2017. "The external cruising costs of parking," Journal of Economic Geography, Oxford University Press, vol. 17(6), pages 1301-1323.
    21. Arnott, Richard & Inci, Eren, 2006. "An integrated model of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 60(3), pages 418-442, November.
    22. Al-Kaisy, Ahmed & Jafari, Amirhossein & Washburn, Scott & Lutinnen, Tapio & Dowling, Richard, 2018. "Performance measures on two-lane highways: Survey of practice," Research in Transportation Economics, Elsevier, vol. 71(C), pages 61-67.
    23. Shoup, Donald C., 2006. "Cruising for Parking," University of California Transportation Center, Working Papers qt55s7079f, University of California Transportation Center.
    24. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    25. Tscharaktschiew, Stefan, 2020. "Why are highway speed limits really justified? An equilibrium speed choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 317-351.
    26. Chen, Zhibin & He, Fang & Yin, Yafeng & Du, Yuchuan, 2017. "Optimal design of autonomous vehicle zones in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 44-61.
    27. Lindsey, Robin, 2012. "Road pricing and investment," Economics of Transportation, Elsevier, vol. 1(1), pages 49-63.
    28. Sajjad Shafiei & Ziyuan Gu & Hanna Grzybowska & Chen Cai, 2023. "Impact of self-parking autonomous vehicles on urban traffic congestion," Transportation, Springer, vol. 50(1), pages 183-203, February.
    29. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    30. Bahrami, Sina & Roorda, Matthew, 2022. "Autonomous vehicle parking policies: A case study of the City of Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 283-296.
    31. Larson, William & Zhao, Weihua, 2020. "Self-driving cars and the city: Effects on sprawl, energy consumption, and housing affordability," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    32. Dahlgren, Joy, 2002. "High-occupancy/toll lanes: where should they be implemented?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 239-255, March.
    33. Robert C. Hampshire & Donald Shoup, 2018. "What Share of Traffic is Cruising for Parking?," Journal of Transport Economics and Policy, University of Bath, vol. 52(3), pages 184-18-201.
    34. Pons-Rigat, Aleix & Proost, Stef & Turró, Mateu, 2020. "Workplace parking policies in an agglomeration: An illustration for Barcelona," Economics of Transportation, Elsevier, vol. 24(C).
    35. Eef Delhaye & Stef Proost & Sandra Rousseau, 2015. "Catching or Fining Speeders," Journal of Transport Economics and Policy, University of Bath, vol. 49(3), pages 415-437, July.
    36. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    37. Tscharaktschiew, Stefan, 2016. "The private (unnoticed) welfare cost of highway speeding behavior from time saving misperceptions," Economics of Transportation, Elsevier, vol. 7, pages 24-37.
    38. Wardman, Mark & Chintakayala, V. Phani K. & de Jong, Gerard, 2016. "Values of travel time in Europe: Review and meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 93-111.
    39. Delhaye, E., 2006. "Traffic safety: Speed limits, strict liability and a km tax," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 205-226, March.
    40. Zakharenko, Roman, 2016. "Self-driving cars will change cities," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 26-37.
    41. van Ommeren, Jos & McIvor, Michael & Mulalic, Ismir & Inci, Eren, 2021. "A novel methodology to estimate cruising for parking and related external costs," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 247-269.
    42. Fábio Duarte & Carlo Ratti, 2018. "The Impact of Autonomous Vehicles on Cities: A Review," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(4), pages 3-18, October.
    43. Lee, Li Way, 1984. "An economic theory of the distribution of traffic speeds," Journal of Urban Economics, Elsevier, vol. 15(3), pages 302-309, May.
    44. Muhammad Sabir & Jos Ommeren & Mark Koetse & Piet Rietveld, 2011. "Adverse Weather and Commuting Speed," Networks and Spatial Economics, Springer, vol. 11(4), pages 701-712, December.
    45. Elvik, Rune, 2010. "A restatement of the case for speed limits," Transport Policy, Elsevier, vol. 17(3), pages 196-204, May.
    46. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    47. Shoup, Donald, 2021. "Pricing curb parking," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 399-412.
    48. Alexander Bigazzi & Robin Lindsey, 2019. "A utility-based bicycle speed choice model with time and energy factors," Transportation, Springer, vol. 46(3), pages 995-1009, June.
    49. Inci, Eren, 2015. "A review of the economics of parking," Economics of Transportation, Elsevier, vol. 4(1), pages 50-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tscharaktschiew, Stefan, 2020. "Why are highway speed limits really justified? An equilibrium speed choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 317-351.
    2. Tscharaktschiew, Stefan & Reimann, Felix, 2021. "On employer-paid parking and parking (cash-out) policy: A formal synthesis of different perspectives," Transport Policy, Elsevier, vol. 110(C), pages 499-516.
    3. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    4. Tscharaktschiew, Stefan, 2016. "The private (unnoticed) welfare cost of highway speeding behavior from time saving misperceptions," Economics of Transportation, Elsevier, vol. 7, pages 24-37.
    5. Sajjad Shafiei & Ziyuan Gu & Hanna Grzybowska & Chen Cai, 2023. "Impact of self-parking autonomous vehicles on urban traffic congestion," Transportation, Springer, vol. 50(1), pages 183-203, February.
    6. Eliasson, Jonas & Börjesson, Maria, 2022. "Costs and benefits of parking charges in residential areas," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 95-109.
    7. Wei Wu & Wei Liu & Fangni Zhang & Vinayak Dixit, 2021. "A New Flexible Parking Reservation Scheme for the Morning Commute under Limited Parking Supplies," Networks and Spatial Economics, Springer, vol. 21(3), pages 513-545, September.
    8. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    9. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    10. Liu, Peng & Xu, Shu-Xian & Ong, Ghim Ping & Tian, Qiong & Ma, Shoufeng, 2021. "Effect of autonomous vehicles on travel and urban characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 128-148.
    11. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    12. Gragera, Albert & Hybel, Jesper & Madsen, Edith & Mulalic, Ismir, 2021. "A model for estimation of the demand for on-street parking," Economics of Transportation, Elsevier, vol. 28(C).
    13. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
    14. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
    15. Geva, Sharon & Fulman, Nir & Ben-Elia, Eran, 2022. "Getting the prices right: Drivers' cruising choices in a serious parking game," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 54-75.
    16. Zhang, Xiang & Liu, Wei & Waller, S. Travis & Yin, Yafeng, 2019. "Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 380-407.
    17. Winter, Konstanze & Cats, Oded & Martens, Karel & van Arem, Bart, 2021. "Parking space for shared automated vehicles: How less can be more," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 61-77.
    18. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    19. Francis Ostermeijer & Hans RA Koster & Leonardo Nunes & Jos van Ommeren, 2021. "Citywide parking policy and traffic: Evidence from Amsterdam," Tinbergen Institute Discussion Papers 21-015/VIII, Tinbergen Institute.
    20. Hirte, Georg & Laes, Renée & Gerike, Regine, 2023. "Working from self-driving cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:178:y:2023:i:c:s0191261523001595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.