IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224011149.html
   My bibliography  Save this article

A novel full-process test bench for deep-sea in-situ power generation systems

Author

Listed:
  • Zhang, Dayu
  • Chai, Kaixin
  • Guo, Penghua
  • Hu, Qiao
  • Li, Jingyin
  • Shams, Ayesha

Abstract

A novel full-process test bench was developed to replace lengthy and costly deep-water experiments. This platform can accurately simulate the dynamic characteristics of hydrokinetic turbines and can be used to evaluate their power-supply capabilities under various conditions. The hydrokinetic turbine power model was established by obtaining discrete performance data through experimentally validated computational fluid dynamics simulations and building surrogate models using the response surface methodology. This approach offers higher accuracy and broader applicability than empirical models. Moreover, a stepper motor platform based on a speed control scheme is proposed for the first time that can achieve high-precision transient simulation with a simplified control mechanism. This platform was employed to assess the power supply capacity of two hydrokinetic turbines under constant and typical deep-sea flow speeds. The ductless Archimedes screw hydrokinetic turbine was found to be more suitable for the deep water application than the high-solidity horizontal axis turbine due to its high self-start capacity and power coefficient. Furthermore, a case study was conducted on the design of a deep-sea in-situ power generation system at Luzon Undercurrent. Results suggest that a ductless Archimedes screw hydrokinetic turbine with a 1000 mm radius can comfortably cater to the energy demands of miniature AUVs.

Suggested Citation

  • Zhang, Dayu & Chai, Kaixin & Guo, Penghua & Hu, Qiao & Li, Jingyin & Shams, Ayesha, 2024. "A novel full-process test bench for deep-sea in-situ power generation systems," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224011149
    DOI: 10.1016/j.energy.2024.131341
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224011149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.