IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009770.html
   My bibliography  Save this article

Optimization strategy for connected automated vehicles to reduce energy consumption on freeway in rainy weather

Author

Listed:
  • Qin, Yanyan
  • Xiao, Tengfei
  • Wang, Hua

Abstract

Energy consumption on freeway significantly contributes to environmental pollution. Rainy weather, as a common adverse condition, will exert a negative impact on car-following behavior of vehicles on freeway and further affect their energy consumption. The emergence of connected automated vehicles (CAVs) has created an opportunity to mitigate these impacts. This paper aims to propose an optimization strategy for CAVs that can reduce energy consumption during car-following behavior on freeway under different rainy weather conditions. To begin with, a calibrated car-following model for regular vehicles (RVs) on freeway in rainy weather was used to derive an optimization strategy for CAVs that have vehicle-to-vehicle communication capability to stabilize traffic flow with smoothed speed fluctuations. The proposed optimization strategy for CAVs was then subjected to simulation experiments to validate its effectiveness. Results indicate that energy consumption on freeway in rainy weather is closely linked to speed fluctuations. Frequent speed fluctuations during car-following behavior could cause more energy consumption. The proposed optimization strategy for CAVs is capable of reducing energy consumption in rainy weather by smoothing speed fluctuations. CAVs equipped with this optimization strategy shows an energy-saving of 34.69%–61.11% compared to RVs under various rainy weather conditions.

Suggested Citation

  • Qin, Yanyan & Xiao, Tengfei & Wang, Hua, 2024. "Optimization strategy for connected automated vehicles to reduce energy consumption on freeway in rainy weather," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009770
    DOI: 10.1016/j.energy.2024.131204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.