IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v187y2024ics0301421524000430.html
   My bibliography  Save this article

The spatial dimension of energy consumption in cities

Author

Listed:
  • Poggi, Francesca
  • Amado, Miguel

Abstract

Most global energy consumption is spatially bounded in cities, leading to an urgent need to reduce urban energy demand and greenhouse gas emissions. This study delves into the spatial dimension of energy consumption, focusing on urban areas' physical and functional parameters. The goal is to define a model to support decision-making for formulating public policies that contribute to promoting strategies for energy efficiency. The theoretical rationale is to consider energy consumption as a space-based process that needs to be legible for policymakers and planners. The spatialization of energy consumption relating to urban morphologies, densities and uses is pivotal to understanding the territory as a multidimensional system in transition. The methodology addresses a Geographic Information System-based approach that delimits morphological patterns to classify urban areas according to energy consumption zoning. The “morpho-energetic analysis” presented is an approach that could provide policy guidance to decision-makers and planners. Using a municipality in Portugal as case study, results indicate that urban morphology permits identifying where and how energy efficiency can be improved, providing a strategic framework to support the definition of energy policies, which leads to the construction of regulations and urban planning measures for dealing with the sustainable energy transition in cities.

Suggested Citation

  • Poggi, Francesca & Amado, Miguel, 2024. "The spatial dimension of energy consumption in cities," Energy Policy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:enepol:v:187:y:2024:i:c:s0301421524000430
    DOI: 10.1016/j.enpol.2024.114023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524000430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an urban energy demand forecasting system to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 110(C), pages 304-317.
    2. Bale, Catherine S.E. & Foxon, Timothy J. & Hannon, Matthew J. & Gale, William F., 2012. "Strategic energy planning within local authorities in the UK: A study of the city of Leeds," Energy Policy, Elsevier, vol. 48(C), pages 242-251.
    3. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
    5. Simone Ferrari & Federica Zagarella & Paola Caputo & Giuliano Dall’O’, 2021. "A GIS-Based Procedure for Estimating the Energy Demand Profiles of Buildings towards Urban Energy Policies," Energies, MDPI, vol. 14(17), pages 1-16, September.
    6. Jones, Glenn A. & Warner, Kevin J., 2016. "The 21st century population-energy-climate nexus," Energy Policy, Elsevier, vol. 93(C), pages 206-212.
    7. Heidrich, Oliver & Hill, Graeme A. & Neaimeh, Myriam & Huebner, Yvonne & Blythe, Philip T. & Dawson, Richard J., 2017. "How do cities support electric vehicles and what difference does it make?," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 17-23.
    8. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    9. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    10. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    11. Solomon, Barry D. & Krishna, Karthik, 2011. "The coming sustainable energy transition: History, strategies, and outlook," Energy Policy, Elsevier, vol. 39(11), pages 7422-7431.
    12. Quan, Steven Jige & Li, Chaosu, 2021. "Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Jie Zhao & Nguyen Xuan Thinh & Cheng Li, 2017. "Investigation of the Impacts of Urban Land Use Patterns on Energy Consumption in China: A Case Study of 20 Provincial Capital Cities," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poggi, Francesca & Firmino, Ana & Amado, Miguel, 2020. "Shaping energy transition at municipal scale: A net-zero energy scenario-based approach," Land Use Policy, Elsevier, vol. 99(C).
    2. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    3. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo, 2019. "Energy transition, poverty and inequality: panel evidence from Vietnam," MPRA Paper 107182, University Library of Munich, Germany, revised 10 May 2019.
    4. Adrian Neacșa & Mirela Panait & Jianu Daniel Mureșan & Marian Catalin Voica & Otilia Manta, 2022. "The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution?," IJERPH, MDPI, vol. 19(5), pages 1-22, March.
    5. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    6. Stephan Bosch & Matthias Schmidt, 2019. "Auswirkungen neuer Energiesysteme auf die wirtschaftliche Entwicklung – Möglichkeiten eines grünen Kapitalismus [Economic development within renewable energy systems – Opportunities for green capit," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 27(2), pages 95-111, June.
    7. George Halkos & Kyriaki Tsilika, 2021. "Visual Exploration of Energy Use in EU 28: Dynamics, Patterns, Policies," Energies, MDPI, vol. 14(22), pages 1-24, November.
    8. Pablo E. Carvajal & Asami Miketa & Nadeem Goussous & Pauline Fulcheri, 2022. "Best Practice in Government Use and Development of Long-Term Energy Transition Scenarios," Energies, MDPI, vol. 15(6), pages 1-21, March.
    9. Frauke Urban & Johan Nordensvärd, 2018. "Low Carbon Energy Transitions in the Nordic Countries: Evidence from the Environmental Kuznets Curve," Energies, MDPI, vol. 11(9), pages 1-17, August.
    10. Werner, Deborah & Lazaro, Lira Luz Benites, 2023. "The policy dimension of energy transition: The Brazilian case in promoting renewable energies (2000–2022)," Energy Policy, Elsevier, vol. 175(C).
    11. Bosch, Stephan & Schmidt, Matthias, 2019. "Is the post-fossil era necessarily post-capitalistic? – The robustness and capabilities of green capitalism," Ecological Economics, Elsevier, vol. 161(C), pages 270-279.
    12. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    13. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    14. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    15. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    16. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    18. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    19. Wiegand, Julia, 2017. "Dezentrale Stromerzeugung als Chance zur Stärkung der Energie-Resilienz: Eine qualitative Analyse kommunaler Strategien im Raum Unna," Wuppertaler Studienarbeiten zur nachhaltigen Entwicklung, Wuppertal Institute for Climate, Environment and Energy, volume 11, number 11.
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:187:y:2024:i:c:s0301421524000430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.