IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v491y2024ics0304380024000577.html
   My bibliography  Save this article

A Bayesian approach to projecting forest dynamics and related uncertainty: An application to continuous cover forests

Author

Listed:
  • Myllymäki, Mari
  • Kuronen, Mikko
  • Bianchi, Simone
  • Pommerening, Arne
  • Mehtätalo, Lauri

Abstract

Continuous cover forestry (CCF) is forest management based on ecological principles and this management type is currently re-visited in many countries. CCF woodlands are known for their structural diversity in terms of tree size and species and forest planning in CCF needs to make room for multiple forest development pathways as opposed to only one management target. As forest management diversifies and management types such as CCF become more common, models used for projecting forest development need to have a generic and flexible bottom-up design. They also need to be able to handle uncertainty to a larger extent and more comprehensively than is necessary with single, traditional forest management types. In this study, a spatial tree model was designed for analyzing a data set involving 18 plots from CCF stands in Southern Finland. The tree model has specific ingrowth, growth and mortality model components, each including a spatially explicit competition effect involving neighboring trees. Approximations were presented that allow inference of the model components operating in annual steps based on time-series measurements from several years. We employed Bayesian methodology and posterior predictive distributions to simulate forest development for short- and long-term projections. The Bayesian approach allowed us to incorporate uncertainties related to model parameters in the projections, and we analyzed these uncertainties based on three scenarios: (1) known plot and tree level random effects, (2) known plot level random effects but unknown tree level random effects, and (3) unknown random effects. Our simulations revealed that uncertainties related to plot effects can be rather high, particularly when accumulated across many years whilst the length of the simulation step only had a minor effect. As the plot and tree effects are not known when tree models are applied in practice, in such cases, it may be possible to significantly improve model projections for a single plot by taking one-off individual-tree growth measurements from the plot and using them for calibrating the model. Random plot effects as used in our tree model are also a way of describing environmental conditions in CCF stands where other traditional descriptors based on stand height and stand age fail to be suitable any more.

Suggested Citation

  • Myllymäki, Mari & Kuronen, Mikko & Bianchi, Simone & Pommerening, Arne & Mehtätalo, Lauri, 2024. "A Bayesian approach to projecting forest dynamics and related uncertainty: An application to continuous cover forests," Ecological Modelling, Elsevier, vol. 491(C).
  • Handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000577
    DOI: 10.1016/j.ecolmodel.2024.110669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.