IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v181y2023ics0167947322002018.html
   My bibliography  Save this article

Identification of microbial features in multivariate regression under false discovery rate control

Author

Listed:
  • Srinivasan, Arun
  • Xue, Lingzhou
  • Zhan, Xiang

Abstract

In many microbiome studies, researchers often aim at detecting statistical associations between microbial taxa and multiple disease-related secondary phenotypes of interest, which are further investigated in downstream functional studies. Most existing approaches tackle this aim by analyzing one taxon at a time and then followed by multiple testing correction. However, the large number of microbial taxa poses a heavy multiple correction burden which often limits the power of discovery of the aforementioned individual taxon-based analyses. Moreover, complicated correlation structures among taxa poses grand challenges for multiple testing correction procedures to achieve a satisfactory performance (e.g., false discovery rate control). To address these potential limitations, a new approach is proposed to detect statistical associations between multiple responses and microbial features in a multivariate regression model, which models the correlations among responses to boost power of association discovery. By utilizing the knockoff filter technique, the proposed procedure also enjoys the property of finite-sample false discovery rate control. It is demonstrated through a comprehensive simulation study to show the validity and usefulness of our new method and apply the methodology to a data set collected from microbiome studies to gain additional biological insights.

Suggested Citation

  • Srinivasan, Arun & Xue, Lingzhou & Zhan, Xiang, 2023. "Identification of microbial features in multivariate regression under false discovery rate control," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:csdana:v:181:y:2023:i:c:s0167947322002018
    DOI: 10.1016/j.csda.2022.107621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322002018
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
    3. Stephen Bates & Emmanuel Candès & Lucas Janson & Wenshuo Wang, 2021. "Metropolized Knockoff Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1413-1427, July.
    4. Neeraj K. Surana & Dennis L. Kasper, 2017. "Moving beyond microbiome-wide associations to causal microbe identification," Nature, Nature, vol. 552(7684), pages 244-247, December.
    5. Arun Srinivasan & Lingzhou Xue & Xiang Zhan, 2021. "Compositional knockoff filter for high‐dimensional regression analysis of microbiome data," Biometrics, The International Biometric Society, vol. 77(3), pages 984-995, September.
    6. Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
    7. James T. Morton & Clarisse Marotz & Alex Washburne & Justin Silverman & Livia S. Zaramela & Anna Edlund & Karsten Zengler & Rob Knight, 2019. "Establishing microbial composition measurement standards with reference frames," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. Emmanuel Candès & Yingying Fan & Lucas Janson & Jinchi Lv, 2018. "Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 551-577, June.
    9. Fan Xia & Jun Chen & Wing Kam Fung & Hongzhe Li, 2013. "A Logistic Normal Multinomial Regression Model for Microbiome Compositional Data Analysis," Biometrics, The International Biometric Society, vol. 69(4), pages 1053-1063, December.
    10. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    11. Lan Luo & Judong Shen & Hong Zhang & Aparna Chhibber & Devan V. Mehrotra & Zheng-Zheng Tang, 2020. "Multi-trait analysis of rare-variant association summary statistics using MTAR," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhigang Li & Katherine Lee & Margaret R. Karagas & Juliette C. Madan & Anne G. Hoen & A. James O’Malley & Hongzhe Li, 2018. "Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 587-608, December.
    2. Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
    3. Chen, Yang & Luo, Ziyan & Kong, Lingchen, 2021. "ℓ2,0-norm based selection and estimation for multivariate generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    4. Wentao Wang & Jiaxuan Liang & Rong Liu & Yunquan Song & Min Zhang, 2022. "A Robust Variable Selection Method for Sparse Online Regression via the Elastic Net Penalty," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    5. Yu-Zhu Tian & Man-Lai Tang & Mao-Zai Tian, 2021. "Bayesian joint inference for multivariate quantile regression model with L $$_{1/2}$$ 1 / 2 penalty," Computational Statistics, Springer, vol. 36(4), pages 2967-2994, December.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    8. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    9. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    10. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    11. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    12. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    13. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    14. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    15. Xiaotong Shen & Wei Pan & Yunzhang Zhu & Hui Zhou, 2013. "On constrained and regularized high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 807-832, October.
    16. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    17. Lenka Zbonakova & Wolfgang Karl Härdle & Weining Wang, 2016. "Time Varying Quantile Lasso," SFB 649 Discussion Papers SFB649DP2016-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    18. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    19. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    20. Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:181:y:2023:i:c:s0167947322002018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.