IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v26y2020i1p69-82n3.html
   My bibliography  Save this article

A Bayesian procedure for bandwidth selection in circular kernel density estimation

Author

Listed:
  • Bedouhene Kahina

    (Department of Mathematics, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria)

  • Zougab Nabil

    (Department of Technology and Research Unit LaMOS, University of Bejaia, Bejaia, Algeria)

Abstract

A Bayesian procedure for bandwidth selection in kernel circular density estimation is investigated, when the Markov chain Monte Carlo (MCMC) sampling algorithm is utilized for Bayes estimates. Under the quadratic and entropy loss functions, the proposed method is evaluated through a simulation study and real data sets, which were already discussed in the literature. The proposed Bayesian approach is very competitive in comparison with the existing classical global methods, namely plug-in and cross-validation techniques.

Suggested Citation

  • Bedouhene Kahina & Zougab Nabil, 2020. "A Bayesian procedure for bandwidth selection in circular kernel density estimation," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 69-82, March.
  • Handle: RePEc:bpj:mcmeap:v:26:y:2020:i:1:p:69-82:n:3
    DOI: 10.1515/mcma-2020-2056
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2020-2056
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2020-2056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    2. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
    3. Oliveira, M. & Crujeiras, R.M. & Rodríguez-Casal, A., 2012. "A plug-in rule for bandwidth selection in circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3898-3908.
    4. Tristan Senga Kiessé & Nabil Zougab & Célestin C. Kokonendji, 2016. "Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data," Computational Statistics, Springer, vol. 31(1), pages 189-206, March.
    5. Oliveira, María & Crujeiras, Rosa M. & Rodríguez-Casal, Alberto, 2014. "NPCirc: An R Package for Nonparametric Circular Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i09).
    6. Taylor, Charles C., 2008. "Automatic bandwidth selection for circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3493-3500, March.
    7. Di Marzio, Marco & Panzera, Agnese & Taylor, Charles C., 2009. "Local polynomial regression for circular predictors," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2066-2075, October.
    8. Charles C. Taylor & Kanti V. Mardia & Marco Di Marzio & Agnese Panzera, 2012. "Validating protein structure using kernel density estimates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2379-2388, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    2. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    3. Pham Ngoc, Thanh Mai, 2019. "Adaptive optimal kernel density estimation for directional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 248-267.
    4. Aboubacar Amiri & Baba Thiam & Thomas Verdebout, 2017. "On the Estimation of the Density of a Directional Data Stream," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 249-267, March.
    5. Oliveira, María & Crujeiras, Rosa M. & Rodríguez-Casal, Alberto, 2014. "NPCirc: An R Package for Nonparametric Circular Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i09).
    6. Oliveira, M. & Crujeiras, R.M. & Rodríguez-Casal, A., 2012. "A plug-in rule for bandwidth selection in circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3898-3908.
    7. Charles C. Taylor & Kanti V. Mardia & Marco Di Marzio & Agnese Panzera, 2012. "Validating protein structure using kernel density estimates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2379-2388, July.
    8. Han, Qinkai & Hao, Zhuolin & Hu, Tao & Chu, Fulei, 2018. "Non-parametric models for joint probabilistic distributions of wind speed and direction data," Renewable Energy, Elsevier, vol. 126(C), pages 1032-1042.
    9. Doho, Libaud Rudy Aurelien & Somé, Sobom Matthieu & Banto, Jean Michel, 2023. "Inflation and west African sectoral stock price indices: An asymmetric kernel method analysis," Emerging Markets Review, Elsevier, vol. 54(C).
    10. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    11. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    12. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    13. Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Local binary regression with spherical predictors," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 30-36.
    14. Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
    15. Said Benlakhdar & Mohammed Rziza & Rachid Oulad Haj Thami, 2022. "Statistical modeling of directional data using a robust hierarchical von mises distribution model: perspectives for wind energy," Computational Statistics, Springer, vol. 37(4), pages 1599-1619, September.
    16. Nuñez-Antonio, Gabriel & Gutiérrez-Peña, Eduardo, 2014. "A Bayesian model for longitudinal circular data based on the projected normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 506-519.
    17. Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
    18. Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2013. "Non-parametric Regression for Circular Responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 238-255, June.
    19. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    20. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:26:y:2020:i:1:p:69-82:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.