IDEAS home Printed from https://ideas.repec.org/r/spr/eurphb/v2y1998i2p277-28210.1007-s100510050250.html
   My bibliography  Save this item

”Direct” causal cascade in the stock market

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bianchi, Daniele & Tamoni, Andrea, 2016. "The dynamics of expected returns: evidence from multi-scale time series modelling," LSE Research Online Documents on Economics 118992, London School of Economics and Political Science, LSE Library.
  2. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
  3. Jun-ichi Maskawa & Koji Kuroda, 2020. "Model of continuous random cascade processes in financial markets," Papers 2010.12270, arXiv.org.
  4. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
  5. Patrice Abry & Yannick Malevergne & Herwig Wendt & Stéphane Jaffard & Marc Senneret & Laurent Jaffrès, 2022. "Foreign Exchange Multivariate Multifractal Analysis," Post-Print hal-03735497, HAL.
  6. Patrice Abry & Yannick Malevergne & Herwig Wendt & Marc Senneret & Laurent Jaffrès & Blaise Liaustrat, 2019. "Shuffling for understanding multifractality, application to asset price time series," Post-Print hal-02361738, HAL.
  7. Qun Zhang & Qunzhi Zhang & Didier Sornette, 2016. "Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-43, November.
  8. Oriol Pont & Antonio Turiel & Conrad J. Perez-Vicente, 2009. "Description, modeling and forecasting of data with optimal wavelets," Post-Print inria-00438526, HAL.
  9. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
  10. D. Sornette & Y. Malevergne & J. F. Muzy, 2002. "Volatility fingerprints of large shocks: Endogeneous versus exogeneous," Papers cond-mat/0204626, arXiv.org.
  11. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
  12. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
  13. Sornette, Didier & Johansen, Anders, 1998. "A hierarchical model of financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 581-598.
  14. Filimonov, Vladimir & Sornette, Didier, 2015. "Power law scaling and “Dragon-Kings” in distributions of intraday financial drawdowns," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 27-45.
  15. Jun-ichi Maskawa & Koji Kuroda & Joshin Murai, 2018. "Multiplicative random cascades with additional stochastic process in financial markets," Evolutionary and Institutional Economics Review, Springer, vol. 15(2), pages 515-529, December.
  16. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
  17. Jun-ichi Maskawa & Koji Kuroda & Joshin Murai, 2018. "Multiplicative random cascades with additional stochastic process in financial markets," Papers 1809.00820, arXiv.org.
  18. Renner, Ch. & Peinke, J. & Friedrich, R., 2001. "Evidence of Markov properties of high frequency exchange rate data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 499-520.
  19. D. Sornette, 1998. "``String'' formulation of the Dynamics of the Forward Interest Rate Curve," Papers cond-mat/9802136, arXiv.org.
  20. Ho, Ding-Shun & Lee, Chung-Kung & Wang, Cheng-Cai & Chuang, Mang, 2004. "Scaling characteristics in the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 448-460.
  21. Struzik, Zbigniew R., 2001. "Wavelet methods in (financial) time-series processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(1), pages 307-319.
  22. Pyko, Nikita S. & Pyko, Svetlana A. & Markelov, Oleg A. & Karimov, Artur I. & Butusov, Denis N. & Zolotukhin, Yaroslav V. & Uljanitski, Yuri D. & Bogachev, Mikhail I., 2018. "Assessment of cooperativity in complex systems with non-periodical dynamics: Comparison of five mutual information metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1054-1072.
  23. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
  24. Gao, Xing-Lu & Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "Do the global grain spot markets exhibit multifractal nature?," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  25. Turiel, Antonio & Pérez-Vicente, Conrad J., 2003. "Multifractal geometry in stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 629-649.
  26. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
  27. Schinckus, Christophe, 2009. "Economic uncertainty and econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4415-4423.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.