IDEAS home Printed from https://ideas.repec.org/f/pel310.html
   My authors  Follow this author

A. M. Elsawah

Personal Details

First Name:A.
Middle Name:M.
Last Name:Elsawah
Suffix:
RePEc Short-ID:pel310
https://www.researchgate.net/profile/A_Elsawah

Affiliation

BNU-HKBU United International College (BNU-HKBU United International College)

https://dst.uic.edu.hk/en/
Zhuhai

Research output

as
Jump to: Working papers Articles

Working papers

  1. Zhongjun Wang & Mengye Sun & A. M. Elsawah, 2020. "Improving MF-DFA model with applications in precious metals market," Papers 2006.15214, arXiv.org.

Articles

  1. A. M. Elsawah & Kai-Tai Fang & Xiao Ke, 2021. "New recommended designs for screening either qualitative or quantitative factors," Statistical Papers, Springer, vol. 62(1), pages 267-307, February.
  2. A. M. Elsawah & Kai-Tai Fang, 2020. "New foundations for designing U-optimal follow-up experiments with flexible levels," Statistical Papers, Springer, vol. 61(2), pages 823-849, April.
  3. A. M. Elsawah & Kai-Tai Fang, 2019. "A catalog of optimal foldover plans for constructing U-uniform minimum aberration four-level combined designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1288-1322, May.
  4. A. M. Elsawah, 2018. "Choice of optimal second stage designs in two-stage experiments," Computational Statistics, Springer, vol. 33(2), pages 933-965, June.
  5. A. M. Elsawah & Kai-Tai Fang, 2018. "New results on quaternary codes and their Gray map images for constructing uniform designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 307-336, April.
  6. M. A. Alawady & A. M. Elsawah & Jianwei Hu & Hong Qin, 2017. "Asymptotic random extremal ratio and product based on generalized order statistics and its dual," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(18), pages 8881-8896, September.
  7. A. M. Elsawah & Hong Qin, 2017. "A new look on optimal foldover plans in terms of uniformity criteria," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1621-1635, February.
  8. A. M. Elsawah & Hong Qin, 2017. "Optimum mechanism for breaking the confounding effects of mixed-level designs," Computational Statistics, Springer, vol. 32(2), pages 781-802, June.
  9. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
  10. A. M. Elsawah & Hong Qin, 2016. "Asymmetric uniform designs based on mixture discrepancy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2280-2294, September.
  11. Elsawah, A.M. & Qin, Hong, 2015. "Mixture discrepancy on symmetric balanced designs," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 123-132.
  12. Elsawah, A.M. & Qin, Hong, 2015. "Lee discrepancy on symmetric three-level combined designs," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 273-280.
  13. H. M. Barakat & E. M. Nigm & A. M. Elsawah, 2015. "Asymptotic Distributions of the Generalized Range, Midrange, Extremal Quotient, and Extremal Product, with a Comparison Study," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(5), pages 900-913, March.
  14. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.
  15. Elsawah, A.M. & Qin, Hong, 2014. "New lower bound for centered L2-discrepancy of four-level U-type designs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 65-71.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Zhongjun Wang & Mengye Sun & A. M. Elsawah, 2020. "Improving MF-DFA model with applications in precious metals market," Papers 2006.15214, arXiv.org.

    Cited by:

    1. Ghazani, Majid Mirzaee & Khosravi, Reza & Caporin, Massimiliano, 2023. "Analyzing interconnection among selected commodities in the 2008 global financial crisis and the COVID-19 pandemic," Resources Policy, Elsevier, vol. 80(C).

Articles

  1. A. M. Elsawah & Kai-Tai Fang & Xiao Ke, 2021. "New recommended designs for screening either qualitative or quantitative factors," Statistical Papers, Springer, vol. 62(1), pages 267-307, February.

    Cited by:

    1. Lin-Chen Weng & Kai-Tai Fang & A. M. Elsawah, 2023. "Degree of isomorphism: a novel criterion for identifying and classifying orthogonal designs," Statistical Papers, Springer, vol. 64(1), pages 93-116, February.

  2. A. M. Elsawah & Kai-Tai Fang, 2019. "A catalog of optimal foldover plans for constructing U-uniform minimum aberration four-level combined designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1288-1322, May.

    Cited by:

    1. A. M. Elsawah & Kai-Tai Fang & Ping He & Hong Qin, 2021. "Sharp lower bounds of various uniformity criteria for constructing uniform designs," Statistical Papers, Springer, vol. 62(3), pages 1461-1482, June.

  3. A. M. Elsawah, 2018. "Choice of optimal second stage designs in two-stage experiments," Computational Statistics, Springer, vol. 33(2), pages 933-965, June.

    Cited by:

    1. A. M. Elsawah, 2021. "Multiple doubling: a simple effective construction technique for optimal two-level experimental designs," Statistical Papers, Springer, vol. 62(6), pages 2923-2967, December.
    2. A. M. Elsawah & Kai-Tai Fang & Xiao Ke, 2021. "New recommended designs for screening either qualitative or quantitative factors," Statistical Papers, Springer, vol. 62(1), pages 267-307, February.

  4. A. M. Elsawah & Kai-Tai Fang, 2018. "New results on quaternary codes and their Gray map images for constructing uniform designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 307-336, April.

    Cited by:

    1. A. M. Elsawah, 2021. "Multiple doubling: a simple effective construction technique for optimal two-level experimental designs," Statistical Papers, Springer, vol. 62(6), pages 2923-2967, December.
    2. A. M. Elsawah & Kai-Tai Fang & Ping He & Hong Qin, 2021. "Sharp lower bounds of various uniformity criteria for constructing uniform designs," Statistical Papers, Springer, vol. 62(3), pages 1461-1482, June.

  5. A. M. Elsawah & Hong Qin, 2017. "A new look on optimal foldover plans in terms of uniformity criteria," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1621-1635, February.

    Cited by:

    1. A. M. Elsawah & Kai-Tai Fang, 2020. "New foundations for designing U-optimal follow-up experiments with flexible levels," Statistical Papers, Springer, vol. 61(2), pages 823-849, April.

  6. A. M. Elsawah & Hong Qin, 2017. "Optimum mechanism for breaking the confounding effects of mixed-level designs," Computational Statistics, Springer, vol. 32(2), pages 781-802, June.

    Cited by:

    1. A. M. Elsawah & Kai-Tai Fang, 2018. "New results on quaternary codes and their Gray map images for constructing uniform designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 307-336, April.
    2. A. M. Elsawah & Kai-Tai Fang & Ping He & Hong Qin, 2021. "Sharp lower bounds of various uniformity criteria for constructing uniform designs," Statistical Papers, Springer, vol. 62(3), pages 1461-1482, June.

  7. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.

    Cited by:

    1. A. M. Elsawah, 2018. "Choice of optimal second stage designs in two-stage experiments," Computational Statistics, Springer, vol. 33(2), pages 933-965, June.
    2. A. M. Elsawah & Kai-Tai Fang, 2020. "New foundations for designing U-optimal follow-up experiments with flexible levels," Statistical Papers, Springer, vol. 61(2), pages 823-849, April.
    3. A. M. Elsawah & Kai-Tai Fang & Ping He & Hong Qin, 2021. "Sharp lower bounds of various uniformity criteria for constructing uniform designs," Statistical Papers, Springer, vol. 62(3), pages 1461-1482, June.

  8. A. M. Elsawah & Hong Qin, 2016. "Asymmetric uniform designs based on mixture discrepancy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2280-2294, September.

    Cited by:

    1. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
    2. A. M. Elsawah & Kai-Tai Fang, 2018. "New results on quaternary codes and their Gray map images for constructing uniform designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 307-336, April.
    3. Bochuan Jiang & Fei Wang & Yaping Wang, 2022. "Construction of uniform mixed-level designs through level permutations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 753-770, August.
    4. A. M. Elsawah & Kai-Tai Fang & Xiao Ke, 2021. "New recommended designs for screening either qualitative or quantitative factors," Statistical Papers, Springer, vol. 62(1), pages 267-307, February.

  9. Elsawah, A.M. & Qin, Hong, 2015. "Mixture discrepancy on symmetric balanced designs," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 123-132.

    Cited by:

    1. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
    2. A. M. Elsawah & Hong Qin, 2016. "Asymmetric uniform designs based on mixture discrepancy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2280-2294, September.

  10. Elsawah, A.M. & Qin, Hong, 2015. "Lee discrepancy on symmetric three-level combined designs," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 273-280.

    Cited by:

    1. Elsawah, A.M. & Qin, Hong, 2015. "Mixture discrepancy on symmetric balanced designs," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 123-132.
    2. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
    3. Zou, Na & Gou, Tingxun & Qin, Hong & Chatterjee, Kashinath, 2020. "Generalized foldover method for high-level designs," Statistics & Probability Letters, Elsevier, vol. 164(C).
    4. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.
    5. A. M. Elsawah & Hong Qin, 2016. "Asymmetric uniform designs based on mixture discrepancy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2280-2294, September.

  11. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.

    Cited by:

    1. Elsawah, A.M. & Qin, Hong, 2015. "Mixture discrepancy on symmetric balanced designs," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 123-132.
    2. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
    3. A. M. Elsawah, 2021. "Multiple doubling: a simple effective construction technique for optimal two-level experimental designs," Statistical Papers, Springer, vol. 62(6), pages 2923-2967, December.
    4. A. M. Elsawah & Kai-Tai Fang, 2020. "New foundations for designing U-optimal follow-up experiments with flexible levels," Statistical Papers, Springer, vol. 61(2), pages 823-849, April.
    5. A. M. Elsawah & Hong Qin, 2016. "Asymmetric uniform designs based on mixture discrepancy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2280-2294, September.

  12. Elsawah, A.M. & Qin, Hong, 2014. "New lower bound for centered L2-discrepancy of four-level U-type designs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 65-71.

    Cited by:

    1. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
    2. Elsawah, A.M. & Qin, Hong, 2015. "A new strategy for optimal foldover two-level designs," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 116-126.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-RMG: Risk Management (1) 2020-07-20

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, A. M. Elsawah should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.