IDEAS home Printed from https://ideas.repec.org/p/war/wpaper/2020-32.html
   My bibliography  Save this paper

Fractional differentiation and its use in machine learning

Author

Listed:
  • Janusz Gajda

    (Faculty of Economic Sciences, University of Warsaw)

  • Rafał Walasek

    (Faculty of Economic Sciences, University of Warsaw)

Abstract

This article covers the implementation of fractional (non-integer order) differentiation on four datasets based on stock prices of main international stock indexes: WIG 20, S&P 500, DAX, Nikkei 225. This concept has been proposed by Lopez de Prado to find the most appropriate balance between zero differentiation and fully differentiated time series. The aim is making time series stationary while keeping its memory and predictive power. This paper makes also the comparison between fractional and classical differentiation in terms of the effectiveness of artificial neural networks. This comparison is done in two viewpoints: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The conclusion of the study is that fractionally differentiated time series performed better in trained ANN.

Suggested Citation

  • Janusz Gajda & Rafał Walasek, 2020. "Fractional differentiation and its use in machine learning," Working Papers 2020-32, Faculty of Economic Sciences, University of Warsaw.
  • Handle: RePEc:war:wpaper:2020-32
    as

    Download full text from publisher

    File URL: https://www.wne.uw.edu.pl/index.php/download_file/5878/
    File Function: First version, 2020
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hedayati , Amin & Hedayati , Moein & Esfandyari, Morteza, 2016. "Stock market index prediction using artificial neural network," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 21(41), pages 89-93.
    2. Jiayu Qiu & Bin Wang & Changjun Zhou, 2020. "Forecasting stock prices with long-short term memory neural network based on attention mechanism," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko & Poza, Carlos, 2022. "The COVID-19 pandemic and the degree of persistence of US stock prices and bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 118-123.
    3. Priyank Sonkiya & Vikas Bajpai & Anukriti Bansal, 2021. "Stock price prediction using BERT and GAN," Papers 2107.09055, arXiv.org.
    4. Akash Doshi & Alexander Issa & Puneet Sachdeva & Sina Rafati & Somnath Rakshit, 2020. "Deep Stock Predictions," Papers 2006.04992, arXiv.org.
    5. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    6. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    7. Subba Rao Polamuri & K. Srinnivas & A. Krishna Mohan, 2023. "Prediction of stock price growth for novel greedy heuristic optimized multi-instances quantitative (NGHOMQ)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-366, February.
    8. Firuz Kamalov & Linda Smail & Ikhlaas Gurrib, 2021. "Stock price forecast with deep learning," Papers 2103.14081, arXiv.org.
    9. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    10. Sangyeon Kim & Myungjoo Kang, 2019. "Financial series prediction using Attention LSTM," Papers 1902.10877, arXiv.org.
    11. Manel Hamdi & Walid Chkili, 2019. "An artificial neural network augmented GARCH model for Islamic stock market volatility: Do asymmetry and long memory matter?," Working Papers 13, Economic Research Forum, revised 21 Aug 2019.
    12. Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    13. Yinan Wang & Xiangbing Kong & Kai Guo & Chunjing Zhao & Jintao Zhao, 2023. "Intelligent Extraction of Terracing Using the ASPP ArrU-Net Deep Learning Model for Soil and Water Conservation on the Loess Plateau," Agriculture, MDPI, vol. 13(7), pages 1-23, June.
    14. Rayadurgam, Vikram Chandramouli & Mangalagiri, Jayasree, 2023. "Does inclusion of GARCH variance in deep learning models improve financial contagion prediction?," Finance Research Letters, Elsevier, vol. 54(C).
    15. Qihang Zhou & Changjun Zhou & Xiao Wang, 2022. "Stock prediction based on bidirectional gated recurrent unit with convolutional neural network and feature selection," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    16. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    17. Federico Mecchia & Marcellino Gaudenzi, 2022. "The dynamics of the prices of the companies of the STOXX Europe 600 Index through the logit model and neural network," Papers 2206.09899, arXiv.org.
    18. Johanna Karina Solano Meza & David Orjuela Yepes & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero, 2023. "Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    19. Hongbing OUYANG & Xiaolu WEI & Qiufeng WU, 2020. "Stock Index Pattern Discovery via Toeplitz Inverse Covariance-based Clustering," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 58-72, July.
    20. Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.

    More about this item

    Keywords

    fractional differentiation; financial time series; stock exchange; artificial neural networks;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2020-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.