IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/577.html
   My bibliography  Save this paper

Ordered Correlation Forest

Author

Listed:

Abstract

Empirical studies in various social sciences often involve categorical outcomes with inherent ordering, such as self-evaluations of subjective well-being and self-assessments in health domains. While ordered choice models, such as the ordered logit and ordered probit, are popular tools for analyzing these outcomes, they may impose restrictive parametric and distributional assumptions. This paper introduces a novel estimator, the ordered correlation forest, that can naturally handle non-linearities in the data and does not assume a specific error term distribution. The proposed estimator modifies a standard random forest splitting criterion to build a collection of forests, each estimating the conditional probability of a single class. Under an “honesty” condition, predictions are consistent and asymptotically normal. The weights induced by each forest are used to obtain standard errors for the predicted probabilities and the covariates’ marginal effects. Evidence from synthetic data shows that the proposed estimator features a superior prediction performance than alternative forest-based estimators and demonstrates its ability to construct valid confidence intervals for the covariates’ marginal effects.

Suggested Citation

  • Riccardo Di Francesco, 2024. "Ordered Correlation Forest," CEIS Research Paper 577, Tor Vergata University, CEIS, revised 06 May 2024.
  • Handle: RePEc:rtv:ceisrp:577
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP577.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Ordered non-numeric outcomes; choice probabilities; machine learning;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.