IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-20-19.html
   My bibliography  Save this paper

Benefits of Energy Technology Innovation Part 1: Power Sector Modeling Results

Author

Listed:
  • Shawhan, Daniel

    (Resources for the Future)

  • Funke, Christoph

    (Resources for the Future)

  • Witkin, Steven

    (Resources for the Future)

Abstract

Policies and funding programs that support research, development, and demonstration (RD&D) for advanced energy technologies are critical elements of an overall strategy for advancing clean energy and decarbonization of the economy. In contrast to direct emissions reduction and technology deployment policies (e.g., standards, financial incentives), however, there have been limited efforts to quantitatively assess the impacts of proposed energy RD&D policies to help inform decisions. An important reason for this information gap is that it has been difficult to estimate (1) how much proposed policies will advance the technologies of interest and (2) how much such technology advances will be worth to society.This study addresses the latter of these questions by estimating the net benefits to society that come from reducing the costs of five different advanced energy technologies. (We refer to these five technologies as the AETs). The AETs are each included in the American Energy Innovation Act (AEIA), which has been introduced in the US Senate, and are as follows:advanced nuclear fission power generation (hereafter, “nuclear”)natural gas power generation with carbon capture and sequestration (NG-CCS)enhanced geothermal power generation (“geothermal”)grid-connected diurnal electricity storage (“storage”)direct air capture of carbon dioxide (DAC)This study estimates the net benefits of reducing the costs of these AETs under scenarios with and without a national clean electricity standard. The components of total net benefits include reduced electricity consumer bills, changes in generator profits and government revenue, health benefits from reduced air pollution, and climate benefits from reduced greenhouse gas emissions. We will refer to the sum of the estimated dollar values of all these impacts as the “net benefits.” Sometimes one or more of the components is negative. When that is the case, it reduces the net benefits. However, the term “net benefits,” as we use it here, does not account for the costs of the technology innovation itself, such as RD&D spending. Instead, one can compare the net benefits estimated here with the associated RD&D spending necessary to achieve those cost reductions, in order to get an overall sense of net value to society.Analytic ApproachThis assessment employs the Engineering, Economic, and Environmental Electricity Simulation Tool (E4ST), a highly realistic simulation model of the US electric power sector. We use the model to determine how different magnitudes of cost reduction for each AET would influence its deployment in the electricity system, as well as the consequences of that deployment. E4ST predicts construction and retirement of grid-serving electricity generating units and hourly operation of the grid and the generating units in future years, under policies, prices, and other conditions specified by the user. The model begins with a highly detailed representation of the current grid, generating units, electricity demand, and hourly, location-by-location wind and solar data. Among the model’s outputs are hourly locational electricity prices; emissions of carbon dioxide (CO₂), methane, sulfur dioxide (SO₂), and nitrogen oxides (NOₓ); and all the components of total net benefits noted above.The five AETs are incorporated in E4ST using high-quality data and an emphasis on rep-resenting how they will respond to different potential circumstances. For example, for any given NG-CCS or DAC plant, the cost of transporting and sequestering carbon dioxide is determined by a network model of the potential future carbon dioxide transportation system and of the estimated supply curve for sequestration in each state or offshore area with high sequestration potential. For enhanced geothermal, we use the model of enhanced geothermal supply curves in 134 US zones from the National Renewable Energy Laboratory (NREL). For diurnal storage, we explicitly model optimal charging and discharging for 52 representative hours and 16 representative days. New nuclear plants can be built at only about 300 locations that pass a suitability screen.For each AET, we simulate five cost levels while holding the costs of the other four AETs constant. The five cost levels are the four shown in Table ES-1 plus a fifth which is higher than ”high” and is sufficiently high that none of that technology can be built. We simulate the year 2050, and all cost levels shown are projections for 2050. For each technology, “high” is a projection, based on a highly credible source in the literature, of the cost of each technology in 2050 if it undergoes only minimal learning-by-doing. For storage, the ”high” cost level assumes some commercial deployment. For the other four AETs, high costs do not assume any commercial deployment. For all AETs except geothermal, the high 2050 cost is still lower than current cost due to assumed cost reductions resulting from a baseline amount of RD&D. “Low” cost is based on the lowest estimate of potential future cost we found from a highly credible source. The low cost tends to include substantial learning through deployment in addition to RD&D. Appendix B gives the sources of these estimates. “Medium” cost is halfway in between the high and low costs. As a further sensitivity, “very low” cost is uniformly 12.5 percent below low cost and can be motivated as a moderate degree of additional learning beyond low cost (see, e.g., Larsen et al. (2019), in which 12.5% is the central estimate of cost reduction from a doubling of cumulative capacity built).Note that the high and low cost assumptions assessed for each technology are only rough indicators of how levelized costs might evolve with differing magnitudes of RD&D and deployment. This is partly because it is impossible to know with certainty how easily the cost of each technology can be reduced and partly because our low-cost projections for different technologies come from different sources, since no single source provides suitable projections for all the AETs.

Suggested Citation

  • Shawhan, Daniel & Funke, Christoph & Witkin, Steven, 2020. "Benefits of Energy Technology Innovation Part 1: Power Sector Modeling Results," RFF Working Paper Series 20-19, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-20-19
    as

    Download full text from publisher

    File URL: https://www.rff.org/documents/2758/Advanced_Energy_Technologies_Part_1__Modeling_Results.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
    2. Shawhan, Daniel L., 2018. "Co-emission and welfare effects of electricity policy and market changes: Results from the EMF 32 model intercomparison project," Energy Economics, Elsevier, vol. 73(C), pages 380-392.
    3. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    4. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    5. Shawhan, Daniel L. & Picciano, Paul D., 2019. "Costs and benefits of saving unprofitable generators: A simulation case study for US coal and nuclear power plants," Energy Policy, Elsevier, vol. 124(C), pages 383-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osorio, Sebastian & Pietzcker, Robert C. & Pahle, Michael & Edenhofer, Ottmar, 2020. "How to deal with the risks of phasing out coal in Germany," Energy Economics, Elsevier, vol. 87(C).
    2. Kenjiro Yagi & Ramteen Sioshansi, 2023. "Simplifying capacity planning for electricity systems with hydroelectric and renewable generation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
    3. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    5. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    6. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    7. Kang, Mary & Mauzerall, Denise L. & Ma, Daniel Z. & Celia, Michael A., 2019. "Reducing methane emissions from abandoned oil and gas wells: Strategies and costs," Energy Policy, Elsevier, vol. 132(C), pages 594-601.
    8. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    9. Stephen C. Newbold & Charles Griffiths & Chris Moore & Ann Wolverton & Elizabeth Kopits, 2013. "A Rapid Assessment Model For Understanding The Social Cost Of Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-40.
    10. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    11. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    12. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    13. Peter, Jakob & Wagner, Johannes, 2018. "Optimal Allocation of Variable Renewable Energy Considering Contributions to Security of Supply," EWI Working Papers 2018-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    14. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    15. Vinel, Alexander & Mortaz, Ebrahim, 2019. "Optimal pooling of renewable energy sources with a risk-averse approach: Implications for US energy portfolio," Energy Policy, Elsevier, vol. 132(C), pages 928-939.
    16. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
    17. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    18. Mills, Andrew & Wiser, Ryan & Millstein, Dev & Carvallo, Juan Pablo & Gorman, Will & Seel, Joachim & Jeong, Seongeun, 2021. "The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States," Applied Energy, Elsevier, vol. 283(C).
    19. Daniel Schiffner & Maik Kecinski & Sandeep Mohapatra, 2021. "An updated look at petroleum well leaks, ineffective policies and the social cost of methane in Canada’s largest oil-producing province," Climatic Change, Springer, vol. 164(3), pages 1-18, February.
    20. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-20-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.