IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2023s-23.html
   My bibliography  Save this paper

Implementing a Hierarchical Deep Learning Approach for Simulating multilevel Auction Data

Author

Listed:
  • Igor Sadoune
  • Marcelin Joanis
  • Andrea Lodi

Abstract

We present a deep learning solution to address the challenges of simulating realistic synthetic first-price sealed-bid auction data. The complexities encountered in this type of auction data include high-cardinality discrete feature spaces and a multilevel structure arising from multiple bids associated with a single auction instance. Our methodology combines deep generative modeling (DGM) with an artificial learner that predicts the conditional bid distribution based on auction characteristics, contributing to advancements in simulation-based research. This approach lays the groundwork for creating realistic auction environments suitable for agent-based learning and modeling applications. Our contribution is twofold: we introduce a comprehensive methodology for simulating multilevel discrete auction data, and we underscore the potential ofDGMas a powerful instrument for refining simulation techniques and fostering the development of economic models grounded in generative AI. Nous proposons une solution basée sur l'apprentissage profond pour simuler de manière réaliste des données d'enchères scellées. Les enjeux liés à ce type de données résident dans la gestion des variables discrètes de grande dimension et de la structure multiniveau liée à la présence de multiples offres pour une seule et même enchère. Notre approche intègre une modélisation générative profonde avec un système d'apprentissage artificiel, capable de prévoir la distribution des offres en fonction des propriétés de l'enchère. Cette stratégie constitue une base solide pour l'élaboration d'environnements d'enchères artificiels mais réalistes, adaptés à l'apprentissage et à la modélisation basés sur les agents. Notre contribution est double: nous introduisons une méthodologie complète pour simuler des données d'enchères discrètes à plusieurs niveaux, et nous mettons en lumière le potentiel de la modélisation générative profonde pour améliorer les techniques de simulation et promouvoir le développement de modèles économiques s'appuyant sur l'intelligence artificielle générative.

Suggested Citation

  • Igor Sadoune & Marcelin Joanis & Andrea Lodi, 2023. "Implementing a Hierarchical Deep Learning Approach for Simulating multilevel Auction Data," CIRANO Working Papers 2023s-23, CIRANO.
  • Handle: RePEc:cir:cirwor:2023s-23
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2023s-23.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    2. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    3. Steven O. Kimbrough & Ming Lu & Frederic Murphy, 2005. "Learning and Tacit Collusion by Artificial Agents in Cournot Duopoly Games," International Handbooks on Information Systems, in: Steven O. Kimbrough & D.J. Wu (ed.), Formal Modelling in Electronic Commerce, pages 477-492, Springer.
    4. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    5. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    6. Green, Edward J & Porter, Robert H, 1984. "Noncooperative Collusion under Imperfect Price Information," Econometrica, Econometric Society, vol. 52(1), pages 87-100, January.
    7. Joshua Angrist & Pierre Azoulay & Glenn Ellison & Ryan Hill & Susan Feng Lu, 2017. "Economic Research Evolves: Fields and Styles," American Economic Review, American Economic Association, vol. 107(5), pages 293-297, May.
    8. Ulrich Schwalbe, 2018. "Algorithms, Machine Learning, And Collusion," Journal of Competition Law and Economics, Oxford University Press, vol. 14(4), pages 568-607.
    9. Skrzypacz, Andrzej & Hopenhayn, Hugo, 2004. "Tacit collusion in repeated auctions," Journal of Economic Theory, Elsevier, vol. 114(1), pages 153-169, January.
    10. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    11. Youri Chassin & Marcelin Joanis, 2010. "Détecter et prévenir la collusion dans les marchés publics en construction: Meilleures pratiques favorisant la concurrence," CIRANO Project Reports 2010rp-13, CIRANO.
    12. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    2. Levy, Daniel & Mayer, Tamir & Raviv, Alon, 2022. "Economists in the 2008 financial crisis: Slow to see, fast to act," Journal of Financial Stability, Elsevier, vol. 60(C).
    3. Daniel Garcia & Juha Tolvanen & Alexander K. Wagner, 2022. "Demand Estimation Using Managerial Responses to Automated Price Recommendations," Management Science, INFORMS, vol. 68(11), pages 7918-7939, November.
    4. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    5. Hannes Mueller & Christopher Rauh, 2022. "The Hard Problem of Prediction for Conflict Prevention," Journal of the European Economic Association, European Economic Association, vol. 20(6), pages 2440-2467.
    6. Lee, Wang-Sheng & Tran, Trang My & Yu, Lamont Bo, 2023. "Green infrastructure and air pollution: Evidence from highways connecting two megacities in China," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    7. Sonan Memon, 2021. "Machine Learning for Economists: An Introduction," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 60(2), pages 201-211.
    8. Arthur Charpentier & Romuald Elie & Carl Remlinger, 2020. "Reinforcement Learning in Economics and Finance," Papers 2003.10014, arXiv.org.
    9. Daniel Levy & Tamir Mayer & Alon Raviv, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," Working Papers hal-02488796, HAL.
    10. Arenas, Andreu & Calsamiglia, Caterina, 2022. "Gender Differences in High-Stakes Performance and College Admission Policies," IZA Discussion Papers 15550, Institute of Labor Economics (IZA).
    11. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    12. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    13. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    14. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    15. John Aoga & Juhee Bae & Stefanija Veljanoska & Siegfried Nijssen & Pierre Schaus, 2020. "Impact of weather factors on migration intention using machine learning algorithms," Papers 2012.02794, arXiv.org.
    16. Mehmet Güney Celbiş & Pui‐hang Wong & Karima Kourtit & Peter Nijkamp, 2023. "Impacts of the COVID‐19 outbreak on older‐age cohorts in European Labor Markets: A machine learning exploration of vulnerable groups," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(3), pages 559-584, April.
    17. Dario Sansone & Anna Zhu, 2023. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
    18. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    19. Wong, Jason Chun Yu & Blankenship, Brian & Urpelainen, Johannes & Balani, Kanika & Ganesan, Karthik & Bharadwaj, Kapardhi, 2022. "Understanding electricity billing preferences in rural and urban India: Evidence from a conjoint experiment," Energy Economics, Elsevier, vol. 106(C).
    20. Yu, Baojun & Li, Changming & Mirza, Nawazish & Umar, Muhammad, 2022. "Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2023s-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.