IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.10198.html
   My bibliography  Save this paper

Comprehensive Causal Machine Learning

Author

Listed:
  • Michael Lechner
  • Jana Mareckova

Abstract

Uncovering causal effects at various levels of granularity provides substantial value to decision makers. Comprehensive machine learning approaches to causal effect estimation allow to use a single causal machine learning approach for estimation and inference of causal mean effects for all levels of granularity. Focusing on selection-on-observables, this paper compares three such approaches, the modified causal forest (mcf), the generalized random forest (grf), and double machine learning (dml). It also provides proven theoretical guarantees for the mcf and compares the theoretical properties of the approaches. The findings indicate that dml-based methods excel for average treatment effects at the population level (ATE) and group level (GATE) with few groups, when selection into treatment is not too strong. However, for finer causal heterogeneity, explicitly outcome-centred forest-based approaches are superior. The mcf has three additional benefits: (i) It is the most robust estimator in cases when dml-based approaches underperform because of substantial selectivity; (ii) it is the best estimator for GATEs when the number of groups gets larger; and (iii), it is the only estimator that is internally consistent, in the sense that low-dimensional causal ATEs and GATEs are obtained as aggregates of finer-grained causal parameters.

Suggested Citation

  • Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
  • Handle: RePEc:arx:papers:2405.10198
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.10198
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.10198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.