IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.05642.html
   My bibliography  Save this paper

Complex network analysis of cryptocurrency market during crashes

Author

Listed:
  • Kundan Mukhia
  • Anish Rai
  • SR Luwang
  • Md Nurujjaman
  • Sushovan Majhi
  • Chittaranjan Hens

Abstract

This paper identifies the cryptocurrency market crashes and analyses its dynamics using the complex network. We identify three distinct crashes during 2017-20, and the analysis is carried out by dividing the time series into pre-crash, crash, and post-crash periods. Partial correlation based complex network analysis is carried out to study the crashes. Degree density ($\rho_D$), average path length ($\bar{l}$), and average clustering coefficient ($\overline{cc}$) are estimated from these networks. We find that both $\rho_D$ and $\overline{cc}$ are smallest during the pre-crash period, and spike during the crash suggesting the network is dense during a crash. Although $\rho_D$ and $\overline{cc}$ decrease in the post-crash period, they remain higher than pre-crash levels for the 2017-18 and 2018-19 crashes suggesting a market attempt to return to normalcy. We get $\bar{l}$ is minimal during the crash period, suggesting a rapid flow of information. A dense network and rapid information flow suggest that during a crash uninformed synchronized panic sell-off happens. However, during the 2019-20 crash, the values of $\rho_D$, $\overline{cc}$, and $\bar{l}$ did not vary significantly, indicating minimal change in dynamics compared to other crashes. The findings of this study may guide investors in making decisions during market crashes.

Suggested Citation

  • Kundan Mukhia & Anish Rai & SR Luwang & Md Nurujjaman & Sushovan Majhi & Chittaranjan Hens, 2024. "Complex network analysis of cryptocurrency market during crashes," Papers 2405.05642, arXiv.org.
  • Handle: RePEc:arx:papers:2405.05642
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.05642
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    2. Babajide Fowowe & Mohammed Shuaibu, 2016. "Dynamic spillovers between Nigerian, South African and international equity markets," International Economics, CEPII research center, issue 148, pages 59-80.
    3. Ji, Qiang & Guo, Jian-Feng, 2015. "Oil price volatility and oil-related events: An Internet concern study perspective," Applied Energy, Elsevier, vol. 137(C), pages 256-264.
    4. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    5. Y. Shapira & D. Y. Kenett & E. Ben-Jacob, 2009. "The Index cohesive effect on stock market correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 657-669, December.
    6. Tong, Zhongwen & Chen, Zhanbo & Zhu, Chen, 2022. "Nonlinear dynamics analysis of cryptocurrency price fluctuations based on Bitcoin," Finance Research Letters, Elsevier, vol. 47(PB).
    7. Young Bin Kim & Jun Gi Kim & Wook Kim & Jae Ho Im & Tae Hyeong Kim & Shin Jin Kang & Chang Hun Kim, 2016. "Predicting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    8. Tomaso Aste, 2019. "Cryptocurrency market structure: connecting emotions and economics," Papers 1903.00472, arXiv.org.
    9. Singh, Vipul Kumar & Nishant, Shreyank & Kumar, Pawan, 2018. "Dynamic and directional network connectedness of crude oil and currencies: Evidence from implied volatility," Energy Economics, Elsevier, vol. 76(C), pages 48-63.
    10. Evrim Mandaci, Pinar & Cagli, Efe Caglar, 2022. "Herding intensity and volatility in cryptocurrency markets during the COVID-19," Finance Research Letters, Elsevier, vol. 46(PB).
    11. Dimitrios Louzis, 2015. "Measuring spillover effects in Euro area financial markets: a disaggregate approach," Empirical Economics, Springer, vol. 49(4), pages 1367-1400, December.
    12. Ahmad, Wasim & Mishra, Anil V. & Daly, Kevin J., 2018. "Financial connectedness of BRICS and global sovereign bond markets," Emerging Markets Review, Elsevier, vol. 37(C), pages 1-16.
    13. Tomaso Aste, 2019. "Cryptocurrency market structure: connecting emotions and economics," Digital Finance, Springer, vol. 1(1), pages 5-21, November.
    14. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2017. "Asymmetric volatility connectedness on the forex market," Journal of International Money and Finance, Elsevier, vol. 77(C), pages 39-56.
    15. Ashadun Nobi & Seong Eun Maeng & Gyeong Gyun Ha & Jae Woo Lee, 2013. "Random Matrix Theory and Cross-correlations in Global Financial Indices and Local Stock Market Indices," Papers 1302.6305, arXiv.org.
    16. C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
    17. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    18. Zhang, Dayong & Broadstock, David C., 2020. "Global financial crisis and rising connectedness in the international commodity markets," International Review of Financial Analysis, Elsevier, vol. 68(C).
    19. Liu, Haitao, 2008. "The complexity of Chinese syntactic dependency networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 3048-3058.
    20. Leonardo H. S. Fernandes & Werner Kristjanpoller & Benjamin Miranda Tabak, 2023. "Asymmetric Multifractal Cross-Correlation Dynamics Between Fiat Currencies And Cryptocurrencies," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-20.
    21. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    22. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    23. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    24. Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
    25. Ashadun Nobi & Sungmin Lee & Doo Hwan Kim & Jae Woo Lee, 2014. "Correlation and Network Topologies in Global and Local Stock Indices," Papers 1402.1552, arXiv.org.
    26. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    2. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    3. Zeng, Ting & Yang, Mengying & Shen, Yifan, 2020. "Fancy Bitcoin and conventional financial assets: Measuring market integration based on connectedness networks," Economic Modelling, Elsevier, vol. 90(C), pages 209-220.
    4. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "Volatility spillovers and other dynamics between cryptocurrencies and the energy and bond markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 1-13.
    5. Andrada-Félix, Julián & Fernandez-Perez, Adrian & Sosvilla-Rivero, Simón, 2020. "Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    6. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    7. Hasan, Mudassar & Naeem, Muhammad Abubakr & Arif, Muhammad & Yarovaya, Larisa, 2021. "Higher moment connectedness in cryptocurrency market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    8. Mudassar Hasan & Muhammad Abubakr Naeem & Muhammad Arif & Syed Jawad Hussain Shahzad & Xuan Vinh Vo, 2022. "Liquidity connectedness in cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    9. Huynh, Toan Luu Duc & Nasir, Muhammad Ali & Vo, Xuan Vinh & Nguyen, Thong Trung, 2020. "“Small things matter most”: The spillover effects in the cryptocurrency market and gold as a silver bullet," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    10. Vidal-Tomás, David, 2021. "The entry and exit dynamics of the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 58(C).
    11. Choi, Sun-Yong, 2022. "Volatility spillovers among Northeast Asia and the US: Evidence from the global financial crisis and the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 179-193.
    12. Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    13. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    14. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    15. Li, Xingyi & Gan, Kai & Zhou, Qi, 2023. "Dynamic volatility connectedness among cryptocurrencies and China's financial assets in standard times and during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 51(C).
    16. Pawan Kumar Singh & Alok Kumar Pandey & S. C. Bose, 2023. "A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2429-2446, June.
    17. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    18. Kumar, Ashish & Iqbal, Najaf & Mitra, Subrata Kumar & Kristoufek, Ladislav & Bouri, Elie, 2022. "Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    19. Peng‐Fei Dai & John W. Goodell & Luu Duc Toan Huynh & Zhifeng Liu & Shaen Corbet, 2023. "Understanding the transmission of crash risk between cryptocurrency and equity markets," The Financial Review, Eastern Finance Association, vol. 58(3), pages 539-573, August.
    20. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.05642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.