IDEAS home Printed from https://ideas.repec.org/a/tpr/glenvp/v19y2019i4p3-13.html
   My bibliography  Save this article

The Climate Vulnerabilities of Global Nuclear Power

Author

Listed:
  • SarahM. Jordaan
  • Afreen Siddiqi
  • William Kakenmaster
  • AliceC. Hill

Abstract

Nuclear power—a source of low-carbon electricity—is exposed toincreasing risks from climate change. Intensifying storms, droughts, extremeprecipitation, wildfires, higher temperatures, and sea-level rise threatensupply disruptions and facility damage. Approximately 64 percent of installedcapacity commenced operation between thirty and forty-eight years ago, beforeclimate change was considered in plant design or construction. Globally, 516million people reside within a fifty mile (80 km) radius of at least oneoperating nuclear power plant, and 20 million reside within a ten mile (16 km)radius, and could face health and safety risks resulting from an extreme eventinduced by climate change. Roughly 41 percent of nuclear power plants operatenear seacoasts, making them vulnerable to increasing storm intensity andsea-level rise. Inland plants face exposure to other climate risks, such asincreasingly severe wildfires and warmer water temperatures. No entity hasresponsibility for conducting risk assessments that adequately evaluate theclimate vulnerabilities of nuclear power and the subsequent threats tointernational energy security, the environment, and human health. Acomprehensive risk assessment by international agencies and the development ofnational and international standards is necessary to mitigate risks for new andexisting plants.

Suggested Citation

  • SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
  • Handle: RePEc:tpr:glenvp:v:19:y:2019:i:4:p:3-13
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/glep_a_00527
    Download Restriction: Access to PDF is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kopytko, Natalie & Perkins, John, 2011. "Climate change, nuclear power, and the adaptation-mitigation dilemma," Energy Policy, Elsevier, vol. 39(1), pages 318-333, January.
    2. Roth, Michael Buchdahl & Jaramillo, Paulina, 2017. "Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing U.S. nuclear power plants as a carbon avoidance strategy," Energy, Elsevier, vol. 131(C), pages 67-77.
    3. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    4. Nicole Detraz, 2011. "Threats or Vulnerabilities? Assessing the Link between Climate Change and Security," Global Environmental Politics, MIT Press, vol. 11(3), pages 104-120, August.
    5. Peter Stoett, 2003. "Toward Renewed Legitimacy? Nuclear Power, Global Warming, and Security," Global Environmental Politics, MIT Press, vol. 3(1), pages 99-116, February.
    6. Hayashi, Masatsugu & Hughes, Larry, 2013. "The Fukushima nuclear accident and its effect on global energy security," Energy Policy, Elsevier, vol. 59(C), pages 102-111.
    7. Kristin Linnerud & Torben K. Mideksa & Gunnar S. Eskeland, 2011. "The Impact of Climate Change on Nuclear Power Supply," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 149-168.
    8. Haratyk, Geoffrey, 2017. "Early nuclear retirements in deregulated U.S. markets: Causes, implications and policy options," Energy Policy, Elsevier, vol. 110(C), pages 150-166.
    9. Matthew D. Bartos & Mikhail V. Chester, 2015. "Impacts of climate change on electric power supply in the Western United States," Nature Climate Change, Nature, vol. 5(8), pages 748-752, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Minsoo & You, Jung S., 2022. "Estimating the economic costs of nuclear power plant outages in a regulated market using a latent factor model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Jenkins, Lisa Martine & Alvarez, Robert & Jordaan, Sarah Marie, 2020. "Unmanaged climate risks to spent fuel from U.S. nuclear power plants: The case of sea-level rise," Energy Policy, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klimenko, V.V. & Fedotova, E.V. & Tereshin, A.G., 2018. "Vulnerability of the Russian power industry to the climate change," Energy, Elsevier, vol. 142(C), pages 1010-1022.
    2. Pengbang Wei & Yufang Peng & Weidong Chen, 2022. "Climate change adaptation mechanisms and strategies of coal-fired power plants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    3. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    4. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    5. Yuan, Mengyao & Tong, Fan & Duan, Lei & Dowling, Jacqueline A. & Davis, Steven J. & Lewis, Nathan S. & Caldeira, Ken, 2020. "Would firm generators facilitate or deter variable renewable energy in a carbon-free electricity system?," Applied Energy, Elsevier, vol. 279(C).
    6. Zhao, Xiaohu & Huang, Guohe & Li, Yongping & Lu, Chen, 2023. "Responses of hydroelectricity generation to streamflow drought under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    7. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    8. Craig, Christopher A. & Feng, Song, 2016. "An examination of electricity generation by utility organizations in the Southeast United States," Energy, Elsevier, vol. 116(P1), pages 601-608.
    9. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    10. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    11. Grant R. McDermott & Øivind A. Nilse, 2014. "Electricity Prices, River Temperatures, and Cooling Water Scarcity," Land Economics, University of Wisconsin Press, vol. 90(1), pages 131-148.
    12. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    13. I. Mouratiadou & M. Bevione & D. L. Bijl & L. Drouet & M. Hejazi & S. Mima & M. Pehl & G. Luderer, 2018. "Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment," Climatic Change, Springer, vol. 147(1), pages 91-106, March.
    14. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    15. Dirk Rübbelke & Stefan Vögele, 2013. "Short-term distributional consequences of climate change impacts on the power sector: who gains and who loses?," Climatic Change, Springer, vol. 116(2), pages 191-206, January.
    16. Bah, Muhammad Maladoh, 2023. "State and federal nuclear support schemes in dynamic electricity market conditions: Insights from NYISO and PJM," Energy Policy, Elsevier, vol. 182(C).
    17. Solveig Glomsrød & Taoyuan Wei & Torben Mideksa & Bjørn Samset, 2015. "Energy market impacts of nuclear power phase-out policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1511-1527, December.
    18. Kahsar, Rudy, 2020. "The potential for brackish water use in thermoelectric power generation in the American southwest," Energy Policy, Elsevier, vol. 137(C).
    19. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    20. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:glenvp:v:19:y:2019:i:4:p:3-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelly McDougall (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.