IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v104y2023i3d10.1007_s11134-023-09888-6.html
   My bibliography  Save this article

Minimizing the mean slowdown in the M/G/1 queue

Author

Listed:
  • Samuli Aalto

    (Aalto University)

  • Ziv Scully

    (Cornell University)

Abstract

We consider the optimal scheduling problem in the M/G/1 queue. While this is a thoroughly studied problem when the target is to minimize the mean delay, there are still open questions related to some other objective functions. In this paper, we focus on minimizing mean slowdown among non-anticipating polices, which may utilize the attained service of the jobs but not their remaining service time when making scheduling decisions. By applying the Gittins index approach, we give necessary and sufficient conditions for the jobs’ service time distribution under which the well-known scheduling policies first come first served and foreground background are optimal with respect to the mean slowdown. Furthermore, we characterize the optimal non-anticipating policy in the multi-class case for certain types of service time distributions. In fact, our results cover a more general objective function than just the mean slowdown, since we allow the holding costs for a job to depend on its own service time S via a generic function c(S). When minimizing the mean slowdown, this function reads as $$c(x) = 1/x$$ c ( x ) = 1 / x .

Suggested Citation

  • Samuli Aalto & Ziv Scully, 2023. "Minimizing the mean slowdown in the M/G/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 187-210, August.
  • Handle: RePEc:spr:queues:v:104:y:2023:i:3:d:10.1007_s11134-023-09888-6
    DOI: 10.1007/s11134-023-09888-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-023-09888-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-023-09888-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald R. Smith, 1978. "Technical Note—A New Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 26(1), pages 197-199, February.
    2. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
    3. Linus Schrage, 1968. "Letter to the Editor—A Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 16(3), pages 687-690, June.
    4. P. S. Ansell & K. D. Glazebrook & J. Niño-Mora & M. O'Keeffe, 2003. "Whittle's index policy for a multi-class queueing system with convex holding costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(1), pages 21-39, April.
    5. Samuli Aalto, 2022. "Minimizing the mean slowdown in a single-server queue," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 373-375, April.
    6. Misja Nuyens & Adam Wierman & Bert Zwart, 2008. "Preventing Large Sojourn Times Using SMART Scheduling," Operations Research, INFORMS, vol. 56(1), pages 88-101, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikhil Bansal & Bart Kamphorst & Bert Zwart, 2018. "Achievable Performance of Blind Policies in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 949-964, August.
    2. Chen, Rubing & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2021. "Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion," European Journal of Operational Research, Elsevier, vol. 293(1), pages 79-92.
    3. Samuli Aalto & Urtzi Ayesta, 2009. "SRPT applied to bandwidth-sharing networks," Annals of Operations Research, Springer, vol. 170(1), pages 3-19, September.
    4. Samuli Aalto & Ziv Scully, 2022. "On the Gittins index for multistage jobs," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 353-371, December.
    5. Yonatan Shadmi, 2022. "Fluid limits for shortest job first with aging," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 93-112, June.
    6. Łukasz Kruk & Ewa Sokołowska, 2016. "Fluid Limits for Multiple-Input Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1055-1092, August.
    7. Adam Wierman & Bert Zwart, 2012. "Is Tail-Optimal Scheduling Possible?," Operations Research, INFORMS, vol. 60(5), pages 1249-1257, October.
    8. Predrag Jelenković & Xiaozhu Kang & Jian Tan, 2009. "Heavy-tailed limits for medium size jobs and comparison scheduling," Annals of Operations Research, Springer, vol. 170(1), pages 133-159, September.
    9. José Niño-Mora, 2006. "Restless Bandit Marginal Productivity Indices, Diminishing Returns, and Optimal Control of Make-to-Order/Make-to-Stock M/G/1 Queues," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 50-84, February.
    10. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    11. Samuli Aalto, 2006. "M/G/1/MLPS compared with M/G/1/PS within service time distribution class IMRL," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 309-325, October.
    12. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    13. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
    14. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
    15. Luca Becchetti & Stefano Leonardi & Alberto Marchetti-Spaccamela & Guido Schäfer & Tjark Vredeveld, 2006. "Average-Case and Smoothed Competitive Analysis of the Multilevel Feedback Algorithm," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 85-108, February.
    16. Nicolas Gast & Bruno Gaujal & Kimang Khun, 2023. "Testing indexability and computing Whittle and Gittins index in subcubic time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 391-436, June.
    17. S. Duran & U. Ayesta & I. M. Verloop, 2022. "On the Whittle index of Markov modulated restless bandits," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 373-430, December.
    18. Samuli Aalto & Pasi Lassila & Prajwal Osti, 2016. "Whittle index approach to size-aware scheduling for time-varying channels with multiple states," Queueing Systems: Theory and Applications, Springer, vol. 83(3), pages 195-225, August.
    19. L Ding & K D Glazebrook, 2005. "A static allocation model for the outsourcing of warranty repairs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 825-835, July.
    20. Rouba Ibrahim, 2022. "Personalized scheduling in service systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 445-447, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:104:y:2023:i:3:d:10.1007_s11134-023-09888-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.