IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v101y2022i3d10.1007_s11134-022-09813-3.html
   My bibliography  Save this article

Infinite-server systems with Hawkes arrivals and Hawkes services

Author

Listed:
  • Dharmaraja Selvamuthu

    (Indian Institute of Technology Delhi)

  • Paola Tardelli

    (University of L’Aquila)

Abstract

This paper is devoted to the study of the number of customers in infinite-server systems driven by Hawkes processes. In these systems, the self-exciting arrival process is assumed to be represented by a Hawkes process and the self-exciting service process by a state-dependent Hawkes process (sdHawkes process). Under some suitable conditions, for the $$\mathrm{Hawkes/sdHawkes/\infty }$$ Hawkes / sdHawkes / ∞ system, the Markov property of the system is derived. The joint time-dependent distribution of the number of customers in the system, the arrival intensity and the server intensity is characterized by a system of differential equations. Then, the time-dependent results are also deduced for the $$\mathrm{M/sdHawkes/\infty }$$ M / sdHawkes / ∞ system.

Suggested Citation

  • Dharmaraja Selvamuthu & Paola Tardelli, 2022. "Infinite-server systems with Hawkes arrivals and Hawkes services," Queueing Systems: Theory and Applications, Springer, vol. 101(3), pages 329-351, August.
  • Handle: RePEc:spr:queues:v:101:y:2022:i:3:d:10.1007_s11134-022-09813-3
    DOI: 10.1007/s11134-022-09813-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-022-09813-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-022-09813-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    2. Dassios, Angelos & Zhao, Hongbiao, 2013. "Exact simulation of Hawkes process with exponentially decaying intensity," LSE Research Online Documents on Economics 51370, London School of Economics and Political Science, LSE Library.
    3. Zhongping Li & Lirong Cui, 2020. "Numerical method for means of linear Hawkes processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(15), pages 3681-3697, August.
    4. Tomasz R. Bielecki & Monique Jeanblanc & Marek Rutkowski, 2006. "Hedging of Credit Derivatives in Models with Totally Unexpected Default," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 2, pages 35-100, World Scientific Publishing Co. Pte. Ltd..
    5. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dieter Fiems & Koen De Turck, 2023. "Analysis of Discrete-Time Queues with Branching Arrivals," Mathematics, MDPI, vol. 11(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    2. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    3. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    4. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    5. Ma, Jin & Yun, Youngyun, 2010. "Correlated intensity, counter party risks, and dependent mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 337-351, December.
    6. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    7. Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    8. Sobin Joseph & Shashi Jain, 2023. "A neural network based model for multi-dimensional nonlinear Hawkes processes," Papers 2303.03073, arXiv.org.
    9. Martin Magris, 2019. "On the simulation of the Hawkes process via Lambert-W functions," Papers 1907.09162, arXiv.org.
    10. Santitissadeekorn, Naratip & Lloyd, David J.B. & Short, Martin B. & Delahaies, Sylvain, 2020. "Approximate filtering of conditional intensity process for Poisson count data: Application to urban crime," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Youngsoo Seol, 2023. "Large Deviations for Hawkes Processes with Randomized Baseline Intensity," Mathematics, MDPI, vol. 11(8), pages 1-10, April.
    12. Tomasz R. Bielecki & Igor Cialenco & Marek Rutkowski, 2017. "Arbitrage-Free Pricing Of Derivatives In Nonlinear Market Models," Papers 1701.08399, arXiv.org, revised Apr 2018.
    13. Lirong Cui & Bei Wu & Juan Yin, 2022. "Moments for Hawkes Processes with Gamma Decay Kernel Functions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1565-1601, September.
    14. Vamsi K. Potluru & Daniel Borrajo & Andrea Coletta & Niccol`o Dalmasso & Yousef El-Laham & Elizabeth Fons & Mohsen Ghassemi & Sriram Gopalakrishnan & Vikesh Gosai & Eleonora Kreav{c}i'c & Ganapathy Ma, 2023. "Synthetic Data Applications in Finance," Papers 2401.00081, arXiv.org, revised Mar 2024.
    15. Jonathan Sadighian, 2019. "Deep Reinforcement Learning in Cryptocurrency Market Making," Papers 1911.08647, arXiv.org.
    16. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    17. Buccioli, Alice & Kokholm, Thomas & Nicolosi, Marco, 2019. "Expected shortfall and portfolio management in contagious markets," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 100-115.
    18. Elhiwi, Majdi, 2014. "Default barrier intensity model for credit risk evaluation," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 125-131.
    19. Tomasz R. Bielecki & Jacek Jakubowski & Mariusz Niewęgłowski, 2022. "Construction and Simulation of Generalized Multivariate Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2865-2896, December.
    20. Gerrit Großmann & Luca Bortolussi & Verena Wolf, 2020. "Efficient simulation of non-Markovian dynamics on complex networks," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:101:y:2022:i:3:d:10.1007_s11134-022-09813-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.