IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v42y2020i3d10.1007_s00291-020-00575-z.html
   My bibliography  Save this article

Optimal allocation of defibrillator drones in mountainous regions

Author

Listed:
  • Christian Wankmüller

    (Alpen-Adria-Universität Klagenfurt)

  • Christian Truden

    (Alpen-Adria Universität Klagenfurt)

  • Christopher Korzen

    (Alpen-Adria-Universität Klagenfurt)

  • Philipp Hungerländer

    (Alpen-Adria Universität Klagenfurt)

  • Ewald Kolesnik

    (Medical University of Graz)

  • Gerald Reiner

    (Vienna University of Economics and Business)

Abstract

Responding to emergencies in Alpine terrain is quite challenging as air ambulances and mountain rescue services are often confronted with logistics challenges and adverse weather conditions that extend the response times required to provide life-saving support. Among other medical emergencies, sudden cardiac arrest (SCA) is the most time-sensitive event that requires the quick provision of medical treatment including cardiopulmonary resuscitation and electric shocks by automated external defibrillators (AED). An emerging technology called unmanned aerial vehicles (or drones) is regarded to support mountain rescuers in overcoming the time criticality of these emergencies by reducing the time span between SCA and early defibrillation. A drone that is equipped with a portable AED can fly from a base station to the patient’s site where a bystander receives it and starts treatment. This paper considers such a response system and proposes an integer linear program to determine the optimal allocation of drone base stations in a given geographical region. In detail, the developed model follows the objectives to minimize the number of used drones and to minimize the average travel times of defibrillator drones responding to SCA patients. In an example of application, under consideration of historical helicopter response times, the authors test the developed model and demonstrate the capability of drones to speed up the delivery of AEDs to SCA patients. Results indicate that time spans between SCA and early defibrillation can be reduced by the optimal allocation of drone base stations in a given geographical region, thus increasing the survival rate of SCA patients.

Suggested Citation

  • Christian Wankmüller & Christian Truden & Christopher Korzen & Philipp Hungerländer & Ewald Kolesnik & Gerald Reiner, 2020. "Optimal allocation of defibrillator drones in mountainous regions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 785-814, September.
  • Handle: RePEc:spr:orspec:v:42:y:2020:i:3:d:10.1007_s00291-020-00575-z
    DOI: 10.1007/s00291-020-00575-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-020-00575-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-020-00575-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    2. Dario Floreano & Robert J. Wood, 2015. "Science, technology and the future of small autonomous drones," Nature, Nature, vol. 521(7553), pages 460-466, May.
    3. Letchford, Adam N. & Miller, Sebastian J., 2014. "An aggressive reduction scheme for the simple plant location problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 674-682.
    4. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rave, Alexander & Fontaine, Pirmin & Kuhn, Heinrich, 2023. "Drone location and vehicle fleet planning with trucks and aerial drones," European Journal of Operational Research, Elsevier, vol. 308(1), pages 113-130.
    2. Xinhui Ren & Ruibo Li, 2023. "The Location Problem of Medical Drone Vertiports for Emergency Cardiac Arrest Needs," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    3. Christian Wankmüller & Maximilian Kunovjanek & Robert Gennaro Sposato & Gerald Reiner, 2020. "Selecting E-Mobility Transport Solutions for Mountain Rescue Operations," Energies, MDPI, vol. 13(24), pages 1-19, December.
    4. Janiele E. S. C. Custodio & Miguel A. Lejeune, 2022. "Spatiotemporal Data Set for Out-of-Hospital Cardiac Arrests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 4-10, January.
    5. Kunovjanek, Maximilian & Wankmüller, Christian, 2021. "Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system," Transport Policy, Elsevier, vol. 106(C), pages 141-152.
    6. Niki Matinrad & Melanie Reuter-Oppermann, 2022. "A review on initiatives for the management of daily medical emergencies prior to the arrival of emergency medical services," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 251-302, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    2. Matteo Fischetti & Ivana Ljubić & Markus Sinnl, 2017. "Redesigning Benders Decomposition for Large-Scale Facility Location," Management Science, INFORMS, vol. 63(7), pages 2146-2162, July.
    3. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    4. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    5. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    6. Stöcker, Claudia & Bennett, Rohan & Koeva, Mila & Nex, Francesco & Zevenbergen, Jaap, 2022. "Scaling up UAVs for land administration: Towards the plateau of productivity," Land Use Policy, Elsevier, vol. 114(C).
    7. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    8. Tsekeris, Theodore, 2016. "Interregional trade network analysis for road freight transport in Greece," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 132-148.
    9. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    10. Correia, Isabel & Melo, Teresa, 2016. "A computational comparison of formulations for a multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment," Technical Reports on Logistics of the Saarland Business School 11, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    11. Pérez-Mesa, Juan Carlos & Galdeano-Gómez, Emilio & Salinas Andújar, Jose A., 2012. "Logistics network and externalities for short sea transport: An analysis of horticultural exports from southeast Spain," Transport Policy, Elsevier, vol. 24(C), pages 188-198.
    12. Emde, Simon & Boysen, Nils, 2012. "Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 135(1), pages 393-402.
    13. Jesus Gonzalez-Feliu, 2013. "Vehicle Routing in Multi-Echelon Distribution Systems with Cross-Docking: A Systematic Lexical-Metanarrative Analysis," Post-Print halshs-00834573, HAL.
    14. Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
    15. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    16. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    17. Boysen, Ole & Schröder, Carsten, 2005. "Economies of Scale in der Produktion versus Diseconomies im Transport: Zum Strukturwandel in der Milchindustrie," Discussion Papers 2005/15, Free University Berlin, School of Business & Economics.
    18. Shulin Wang & Shanhua Wu, 2023. "Optimizing the Location of Virtual-Shopping-Experience Stores Based on the Minimum Impact on Urban Traffic," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    19. Olivares-Benitez, Elias & Ríos-Mercado, Roger Z. & González-Velarde, José Luis, 2013. "A metaheuristic algorithm to solve the selection of transportation channels in supply chain design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 161-172.
    20. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:42:y:2020:i:3:d:10.1007_s00291-020-00575-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.