IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v23y2017i4d10.1007_s10588-016-9238-9.html
   My bibliography  Save this article

Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior

Author

Listed:
  • Wei Zhong

    (Renmin University of China)

Abstract

Individual responsive behavior to an influenza pandemic has significant impacts on the spread dynamics of this epidemic. Current influenza modeling efforts considering responsive behavior either oversimplify the process and may underestimate pandemic impacts, or make other problematic assumptions and are therefore constrained in utility. This study develops an agent-based model for pandemic simulation, and incorporates individual responsive behavior in the model based on public risk communication literature. The resultant model captures the stochastic nature of epidemic spread process, and constructs a realistic picture of individual reaction process and responsive behavior to pandemic situations. The model is then applied to simulate the spread dynamics of 2009 H1N1 influenza in a medium-size community in Arizona. Simulation results illustrate and compare the spread timeline and scale of this pandemic influenza, without and with the presence of pubic risk communication and individual responsive behavior. Sensitivity analysis sheds some lights on the influence of different communication strategies on pandemic impacts. Those findings contribute to effective pandemic planning and containment, particularly at the beginning of an outbreak.

Suggested Citation

  • Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
  • Handle: RePEc:spr:comaot:v:23:y:2017:i:4:d:10.1007_s10588-016-9238-9
    DOI: 10.1007/s10588-016-9238-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-016-9238-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-016-9238-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Tang, C.S.K. & Wong, C.-Y., 2003. "An Outbreak of the Severe Acute Respiratory Syndrome: Predictors of Health Behaviors and Effect of Community Prevention Measures in Hong Kong, China," American Journal of Public Health, American Public Health Association, vol. 93(11), pages 1887-1889.
    3. Philipson, Tomas, 2000. "Economic epidemiology and infectious diseases," Handbook of Health Economics, in: A. J. Culyer & J. P. Newhouse (ed.), Handbook of Health Economics, edition 1, volume 1, chapter 33, pages 1761-1799, Elsevier.
    4. Byung-Kwang Yoo & Megumi Kasajima & Jay Bhattacharya, 2010. "Public Avoidance and the Epidemiology of novel H1N1 Influenza A," NBER Working Papers 15752, National Bureau of Economic Research, Inc.
    5. Benjamin M. Eidelson & Ian Lustick, 2004. "VIR-POX: An Agent-Based Analysis of Smallpox Preparedness and Response Policy," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 7(3), pages 1-6.
    6. Vaughan, E. & Tinker, T., 2009. "Effective health risk communication about pandemic influenza for vulnerable populations," American Journal of Public Health, American Public Health Association, vol. 99(S2), pages 324-332.
    7. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    8. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    9. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331.
    10. Wei Zhong & Yushim Kim & Megan Jehn, 2013. "Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 622-645, December.
    11. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    12. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    13. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    14. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    15. Ling Bian, 2004. "A Conceptual Framework for an Individual-Based Spatially Explicit Epidemiological Model," Environment and Planning B, , vol. 31(3), pages 381-395, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhong & Yushim Kim & Megan Jehn, 2013. "Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 622-645, December.
    2. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    3. Xi Guo & Abhineet Gupta & Anand Sampat & Chengwei Zhai, 2022. "A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-23, January.
    4. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    5. Sumedha Gupta & Kosali I. Simon & Coady Wing, 2020. "Mandated and Voluntary Social Distancing During The COVID-19 Epidemic: A Review," NBER Working Papers 28139, National Bureau of Economic Research, Inc.
    6. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    7. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    9. Gong Kai & Kang Li, 2018. "A New K-Shell Decomposition Method for Identifying Influential Spreaders of Epidemics on Community Networks," Journal of Systems Science and Information, De Gruyter, vol. 6(4), pages 366-375, August.
    10. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    11. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    12. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Lucas Böttcher & Hans J Herrmann & Hans Gersbach, 2018. "Clout, activists and budget: The road to presidency," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-11, March.
    14. David J. Haw & Christian Morgenstern & Giovanni Forchini & Robert Johnson & Patrick Doohan & Peter C. Smith & Katharina D. Hauck, 2022. "Data needs for integrated economic-epidemiological models of pandemic mitigation policies," Papers 2209.01487, arXiv.org.
    15. Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
    16. Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
    17. Xiaolei Gao & Jianjian Wei & Hao Lei & Pengcheng Xu & Benjamin J Cowling & Yuguo Li, 2016. "Building Ventilation as an Effective Disease Intervention Strategy in a Dense Indoor Contact Network in an Ideal City," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-20, September.
    18. Hend Alrasheed & Alhanoof Althnian & Heba Kurdi & Heila Al-Mgren & Sulaiman Alharbi, 2020. "COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis," IJERPH, MDPI, vol. 17(21), pages 1-24, October.
    19. Fenichel, Eli P., 2013. "Economic considerations for social distancing and behavioral based policies during an epidemic," Journal of Health Economics, Elsevier, vol. 32(2), pages 440-451.
    20. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:23:y:2017:i:4:d:10.1007_s10588-016-9238-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.