IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v123y2014i3p477-493.html
   My bibliography  Save this article

Bioenergy in energy transformation and climate management

Author

Listed:
  • Steven Rose
  • Elmar Kriegler
  • Ruben Bibas
  • Katherine Calvin
  • Alexander Popp
  • Detlef Vuuren
  • John Weyant

Abstract

This study explores the importance of bioenergy to potential future energy transformation and climate change management. Using a large inter-model comparison of 15 models, we comprehensively characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives. Model scenarios project, by 2050, bioenergy growth of 1 to 10 % per annum reaching 1 to 35 % of global primary energy, and by 2100, bioenergy becoming 10 to 50 % of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 % of regional electricity from biopower by 2050, and up to 70 % of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation and macroeconomic costs of climate policies. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels, but with potential implications for climate outcomes. Finally, we find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. The results suggest opportunities, but also imply challenges. Overall, further evaluation of the viability of large-scale global bioenergy is merited. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Steven Rose & Elmar Kriegler & Ruben Bibas & Katherine Calvin & Alexander Popp & Detlef Vuuren & John Weyant, 2014. "Bioenergy in energy transformation and climate management," Climatic Change, Springer, vol. 123(3), pages 477-493, April.
  • Handle: RePEc:spr:climat:v:123:y:2014:i:3:p:477-493
    DOI: 10.1007/s10584-013-0965-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0965-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0965-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
    2. Thomas W. Hertel & Wallace E. Tyner & Dileep K. Birur, 2010. "The Global Impacts of Biofuel Mandates," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-100.
    3. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.
    4. Detlef P. van Vuuren, Elie Bellevrat, Alban Kitous and Morna Isaac, 2010. "Bio-Energy Use and Low Stabilization Scenarios," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    5. Ruben N. Lubowski & Steven K. Rose, 2013. "The Potential for REDD+: Key Economic Modeling Insights and Issues," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 67-90, January.
    6. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brigitte Knopf, Ottmar Edenhofer, Christian Flachsland, Marcel T. J. Kok, Hermann Lotze-Campen, Gunnar Luderer, Alexander Popp, Detlef P. van Vuuren, 2010. "Managing the Low-Carbon Transition - From Model Results to Policies," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Ujjayant Chakravorty & Marie‐Hélène Hubert & Michel Moreaux & Linda Nøstbakken, 2017. "Long‐Run Impact of Biofuels on Food Prices," Scandinavian Journal of Economics, Wiley Blackwell, vol. 119(3), pages 733-767, July.
    3. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    4. Keles, Derya & Choumert-Nkolo, Johanna & Combes Motel, Pascale & Nazindigouba Kéré, Eric, 2018. "Does the expansion of biofuels encroach on the forest?," Journal of Forest Economics, Elsevier, vol. 33(C), pages 75-82.
    5. Piroli, Giuseppe & Ciaian, Pavel & Kancs, d'Artis, 2012. "Land use change impacts of biofuels: Near-VAR evidence from the US," Ecological Economics, Elsevier, vol. 84(C), pages 98-109.
    6. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    7. Ujjayant Chakravorty & Marie-Helene Hubert & Michel Moreaux, 2014. "Land Allocation between Food and Energy," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 9(1), pages 52-69, March.
    8. Golub, Alexander & Lubowski, Ruben & Piris-Cabezas, Pedro, 2017. "Balancing Risks from Climate Policy Uncertainties: The Role of Options and Reduced Emissions from Deforestation and Forest Degradation," Ecological Economics, Elsevier, vol. 138(C), pages 90-98.
    9. Cui, Hao (David) & Tyner, Wally, 2017. "Modeling Land Intensification Response in GTAP: Implications for Biofuels Induced Land Use Change," Conference papers 332812, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Vorotnikova, Ekaterina & Seale, James L, 2014. "U.S. Ethanol Mandate Is a Hidden Subsidy to Corn Producers," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162551, Southern Agricultural Economics Association.
    11. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28, December.
    12. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    13. Santamaría, Marta & Azqueta, Diego, 2015. "Promoting biofuels use in Spain: A cost-benefit analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1415-1424.
    14. Janine Pelikan & Wolfgang Britz & Thomas W. Hertel, 2015. "Green Light for Green Agricultural Policies? An Analysis at Regional and Global Scales," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(1), pages 1-19, February.
    15. Cui, Jingbo, 2012. "Three essays on biofuel, environmental economics, and international trade," ISU General Staff Papers 201201010800003311, Iowa State University, Department of Economics.
    16. Powell, J.P. & Rutten, M., 2013. "Convergence of European wheat yields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 53-70.
    17. Chen, Xiaoguang & Khanna, Madhu, 2014. "Indirect Land Use Effects of Corn Ethanol in the U.S: Implications for the Conservation Reserve Program," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170284, Agricultural and Applied Economics Association.
    18. Antonio M. Bento, Richard Klotz, and Joel R. Landry, 2015. "Are there Carbon Savings from US Biofuel Policies? The Critical Importance of Accounting for Leakage in Land and Fuel Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    19. Popp, Alexander & Krause, Michael & Dietrich, Jan Philipp & Lotze-Campen, Hermann & Leimbach, Marian & Beringer, Tim & Bauer, Nico, 2012. "Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy," Ecological Economics, Elsevier, vol. 74(C), pages 64-70.
    20. Wetzstein, M. & Wetzstein, H., 2011. "Four myths surrounding U.S. biofuels," Energy Policy, Elsevier, vol. 39(7), pages 4308-4312, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:123:y:2014:i:3:p:477-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.