IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v119y2013i2p479-494.html
   My bibliography  Save this article

Climate policies can help resolve energy security and air pollution challenges

Author

Listed:
  • David McCollum
  • Volker Krey
  • Keywan Riahi
  • Peter Kolp
  • Arnulf Grubler
  • Marek Makowski
  • Nebojsa Nakicenovic

Abstract

This paper assesses three key energy sustainability objectives: energy security improvement, climate change mitigation, and the reduction of air pollution and its human health impacts. We explain how the common practice of narrowly focusing on singular issues ignores potentially enormous synergies, highlighting the need for a paradigm shift toward more holistic policy approaches. Our analysis of a large ensemble of alternate energy-climate futures, developed using MESSAGE, an integrated assessment model, shows that stringent climate change policy offers a strategic entry point along the path to energy sustainability in several dimensions. Concerted decarbonization efforts can lead to improved air quality, thereby reducing energy-related health impacts worldwide: upwards of 2–32 million fewer disability-adjusted life years in 2030, depending on the aggressiveness of the air pollution policies foreseen in the baseline. At the same time, low-carbon technologies and energy-efficiency improvements can help to further the energy security goals of individual countries and regions by promoting a more dependable, resilient, and diversified energy portfolio. The cost savings of these climate policy synergies are potentially enormous: $100–600 billion annually by 2030 in reduced pollution control and energy security expenditures (0.1–0.7 % of GDP). Novel aspects of this paper include an explicit quantification of the health-related co-benefits of present and future air pollution control policies; an analysis of how future constraints on regional trade could influence energy security; a detailed assessment of energy expenditures showing where financing needs to flow in order to achieve the multiple energy sustainability objectives; and a quantification of the relationships between different fulfillment levels for energy security and air pollution goals and the probability of reaching the 2 °C climate target. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • David McCollum & Volker Krey & Keywan Riahi & Peter Kolp & Arnulf Grubler & Marek Makowski & Nebojsa Nakicenovic, 2013. "Climate policies can help resolve energy security and air pollution challenges," Climatic Change, Springer, vol. 119(2), pages 479-494, July.
  • Handle: RePEc:spr:climat:v:119:y:2013:i:2:p:479-494
    DOI: 10.1007/s10584-013-0710-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0710-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0710-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollen, Johannes & Hers, Sebastiaan & van der Zwaan, Bob, 2010. "An integrated assessment of climate change, air pollution, and energy security policy," Energy Policy, Elsevier, vol. 38(8), pages 4021-4030, August.
    2. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    3. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, November.
    4. van Vuuren, D.P. & Cofala, J. & Eerens, H.E. & Oostenrijk, R. & Heyes, C. & Klimont, Z. & den Elzen, M.G.J. & Amann, M., 2006. "Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe," Energy Policy, Elsevier, vol. 34(4), pages 444-460, March.
    5. Nebojsa Nakicenovic & Peter Kolp & Keywan Riahi & Mikiko Kainuma & Tatsuya Hanaoka, 2006. "Assessment of emissions scenarios revisited," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 137-173, September.
    6. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jewell, Jessica & Cherp, Aleh & Riahi, Keywan, 2014. "Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices," Energy Policy, Elsevier, vol. 65(C), pages 743-760.
    2. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    3. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    4. Nandini Das & Shyamasree Dasgupta & Joyashree Roy & Oluf Langhelle & Mohsen Assadi, 2021. "Emission Mitigation and Energy Security Trade-Off: Role of Natural Gas in the Indian Power Sector," Energies, MDPI, vol. 14(13), pages 1-17, June.
    5. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    6. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    7. Hoggett, Richard, 2014. "Technology scale and supply chains in a secure, affordable and low carbon energy transition," Applied Energy, Elsevier, vol. 123(C), pages 296-306.
    8. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    9. Ian Cronshaw & Quentin Grafton, 2014. "Reflections on Energy Security in the Asia Pacific," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(1), pages 127-143, January.
    10. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    11. Måns Nilsson & Paul Lucas & Tetsuro Yoshida, 2013. "Towards an Integrated Framework for SDGs: Ultimate and Enabling Goals for the Case of Energy," Sustainability, MDPI, vol. 5(10), pages 1-28, September.
    12. Abdelrahman Azzuni & Arman Aghahosseini & Manish Ram & Dmitrii Bogdanov & Upeksha Caldera & Christian Breyer, 2020. "Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    13. Martchamadol, Jutamanee & Kumar, S., 2013. "An aggregated energy security performance indicator," Applied Energy, Elsevier, vol. 103(C), pages 653-670.
    14. Larsen, Erik R. & Osorio, Sebastian & van Ackere, Ann, 2017. "A framework to evaluate security of supply in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 646-655.
    15. Su, Meirong & Zhang, Mingqi & Lu, Weiwei & Chang, Xin & Chen, Bin & Liu, Gengyuan & Hao, Yan & Zhang, Yan, 2017. "ENA-based evaluation of energy supply security: Comparison between the Chinese crude oil and natural gas supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 888-899.
    16. Månsson, André & Sanches-Pereira, Alessandro & Hermann, Sebastian, 2014. "Biofuels for road transport: Analysing evolving supply chains in Sweden from an energy security perspective," Applied Energy, Elsevier, vol. 123(C), pages 349-357.
    17. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    18. David L. McCollum & Volker Krey & Keywan Riahi, 2012. "Beyond Rio: Sustainable energy scenarios for the 21st century," Natural Resources Forum, Blackwell Publishing, vol. 36(4), pages 215-230, November.
    19. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    20. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:119:y:2013:i:2:p:479-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.