IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v20y2022i2d10.1007_s10288-021-00478-x.html
   My bibliography  Save this article

A detailed note on the finite-buffer queueing system with correlated batch-arrivals and batch-size-/phase-dependent bulk-service

Author

Listed:
  • Souvik Ghosh

    (Tel Aviv University)

  • A. D. Banik

    (Indian Institute of Technology Bhubaneswar, Argul Campus)

  • Joris Walraevens

    (Ghent University)

  • Herwig Bruneel

    (Ghent University)

Abstract

This paper analyzes a finite-buffer queueing system, where customers arrive in batches and the accepted customers are served in batches by a single server. The service is assumed to be dependent on the batch-size and follows a general bulk service rule. The inter-arrival times of batches are assumed to be correlated and they are represented through the batch Markovian arrival process (BMAP). Computation procedure of the queue-length distributions at the post-batch-service completion, an arbitrary, and the pre-batch-arrival epochs are discussed. Various performance measures along with the consecutive customer loss probabilities are studied considering batch-size-dependent renewal service time distributions. Further, the above finite-buffer bulk-service queueing model is also investigated considering correlated batch-service times which are presented through the Markovian service process (MSP). The phase-dependent consecutive loss probabilities for the correlated batch-service times are determined. In the form of tables and graphs, a variety of numerical results for different batch-service time distributions are presented in this paper.

Suggested Citation

  • Souvik Ghosh & A. D. Banik & Joris Walraevens & Herwig Bruneel, 2022. "A detailed note on the finite-buffer queueing system with correlated batch-arrivals and batch-size-/phase-dependent bulk-service," 4OR, Springer, vol. 20(2), pages 241-272, June.
  • Handle: RePEc:spr:aqjoor:v:20:y:2022:i:2:d:10.1007_s10288-021-00478-x
    DOI: 10.1007/s10288-021-00478-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-021-00478-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-021-00478-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Pradhan & U. C. Gupta, 2019. "Analysis of an infinite-buffer batch-size-dependent service queue with Markovian arrival process," Annals of Operations Research, Springer, vol. 277(2), pages 161-196, June.
    2. A. D. Banik & M. L. Chaudhry, 2017. "Efficient Computational Analysis of Stationary Probabilities for the Queueing System BMAP / G /1/ N With or Without Vacation(s)," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 140-151, February.
    3. Warren B. Powell, 1985. "Analysis of Vehicle Holding and Cancellation Strategies in Bulk Arrival, Bulk Service Queues," Transportation Science, INFORMS, vol. 19(4), pages 352-377, November.
    4. António Pacheco & Helena Ribeiro, 2008. "Consecutive customer losses in oscillating GI X /M//n systems with state dependent services rates," Annals of Operations Research, Springer, vol. 162(1), pages 143-158, September.
    5. Winfried K. Grassmann & Michael I. Taksar & Daniel P. Heyman, 1985. "Regenerative Analysis and Steady State Distributions for Markov Chains," Operations Research, INFORMS, vol. 33(5), pages 1107-1116, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le-Duc, T. & de Koster, M.B.M., 2002. "Determining The Optimal Order Picking Batch Size In Single Aisle Warehouses," ERIM Report Series Research in Management ERS-2002-64-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Sergei Dudin & Olga Dudina, 2023. "Analysis of a Multi-Server Queue with Group Service and Service Time Dependent on the Size of a Group as a Model of a Delivery System," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
    3. Tijms, H.C. & Coevering, M.C.T. van de, 1990. "How to solve numerically the equilibrium equations of a Markov chain with infinitely many states," Serie Research Memoranda 0046, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    4. S. K. Samanta & R. Nandi, 2021. "Queue-Length, Waiting-Time and Service Batch Size Analysis for the Discrete-Time GI/D-MSP (a,b) / 1 / ∞ $^{\text {(a,b)}}/1/\infty $ Queueing System," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1461-1488, December.
    5. Anton J. Kleywegt & Jason D. Papastavrou, 1998. "Acceptance and Dispatching Policies for a Distribution Problem," Transportation Science, INFORMS, vol. 32(2), pages 127-141, May.
    6. A. Banik & U. Gupta, 2007. "Analyzing the finite buffer batch arrival queue under Markovian service process: GI X /MSP/1/N," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 146-160, July.
    7. Andrzej Chydzinski & Pawel Mrozowski, 2016. "Queues with Dropping Functions and General Arrival Processes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-23, March.
    8. Kao, Edward P. C. & Wilson, Sandra D., 1999. "Analysis of nonpreemptive priority queues with multiple servers and two priority classes," European Journal of Operational Research, Elsevier, vol. 118(1), pages 181-193, October.
    9. Amod J. Basnet & Isaac M. Sonin, 2022. "Parallel computing for Markov chains with islands and ports," Annals of Operations Research, Springer, vol. 317(2), pages 335-352, October.
    10. Dieter Fiems & Koen De Turck, 2023. "Analysis of Discrete-Time Queues with Branching Arrivals," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    11. Katerina P. Papadaki & Warren B. Powell, 2003. "An adaptive dynamic programming algorithm for a stochastic multiproduct batch dispatch problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 742-769, October.
    12. M. A. A. Boon & A. J. E. M. Janssen & J. S. H. Leeuwaarden & R. W. Timmerman, 2019. "Pollaczek contour integrals for the fixed-cycle traffic-light queue," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 89-111, February.
    13. A. D. Banik & M. L. Chaudhry & U. C. Gupta, 2008. "On the Finite Buffer Queue with Renewal Input and Batch Markovian Service Process: GI/BMSP/1/N," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 559-575, December.
    14. Sıla Çetinkaya & Chung‐Yee Lee, 2002. "Optimal outbound dispatch policies: Modeling inventory and cargo capacity," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 531-556, September.
    15. Senthil K. Veeraraghavan & Laurens G. Debo, 2011. "Herding in Queues with Waiting Costs: Rationality and Regret," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 329-346, July.
    16. Isaac M. Sonin & Constantine Steinberg, 2016. "Continue, quit, restart probability model," Annals of Operations Research, Springer, vol. 241(1), pages 295-318, June.
    17. Ayane Nakamura & Tuan Phung-Duc, 2023. "Equilibrium Analysis for Batch Service Queueing Systems with Strategic Choice of Batch Size," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    18. Srinivas R. Chakravarthy & Shruti & Alexander Rumyantsev, 2021. "Analysis of a Queueing Model with Batch Markovian Arrival Process and General Distribution for Group Clearance," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1551-1579, December.
    19. Edmundo de Souza e Silva & Rosa M. M. Leão & Raymond Marie, 2013. "Efficient Transient Analysis of Markovian Models Using a Block Reduction Approach," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 743-757, November.
    20. Grassmann, Winfried K., 1996. "Optimizing steady state Markov chains by state reduction," European Journal of Operational Research, Elsevier, vol. 89(2), pages 277-284, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:20:y:2022:i:2:d:10.1007_s10288-021-00478-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.