IDEAS home Printed from https://ideas.repec.org/a/sae/vision/v28y2024i2p193-209.html
   My bibliography  Save this article

A Comparative Study of Financial Crises: Fractal Dissection of Investor Rationality

Author

Listed:
  • Sonali Agarwal
  • Anshul Vats

Abstract

Any non-linear dynamic system can be checked for structural properties only at the time of extremes/crises. Hence, in this research article we tried to investigate stock markets for visible patterns or structures in the vicinity of crashes. We used fractal dimension analysis for studying the volatility of prices and presence of noise and patterns in the time series data of NIFTY, SENSEX and gold. We found change in market predictability of the various time series in the surrounding of crash points. There was measurable change in persistence levels around rupture points. It can be concluded that excessive order in stock markets can choke the markets which then witness crashes to relieve this symmetry and resume randomness for normal functioning. We supported the results with behavioural biases and patterns of investors. The repetitive trading psychology, different intensity of emotions of investors towards their gains and losses, and onset of irrationality and fear leads to worsening of any financial crisis. The crashes can have devastating effects on the economy and the investors. We there have tried to find visible patterns that can serve as warning signals of an approaching crisis. This can be of special assistance to the investors, traders and speculators who enjoy playing in the stock market.

Suggested Citation

  • Sonali Agarwal & Anshul Vats, 2024. "A Comparative Study of Financial Crises: Fractal Dissection of Investor Rationality," Vision, , vol. 28(2), pages 193-209, April.
  • Handle: RePEc:sae:vision:v:28:y:2024:i:2:p:193-209
    DOI: 10.1177/09722629211022518
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/09722629211022518
    Download Restriction: no

    File URL: https://libkey.io/10.1177/09722629211022518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    2. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    3. B. B. Mandelbrot, 2001. "Scaling in financial prices: IV. Multifractal concentration," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 641-649.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sutthisit Jamdee & Cornelis A. Los, 2005. "Multifractal Modeling of the US Treasury Term Structure and Fed Funds Rate," Finance 0502021, University Library of Munich, Germany.
    2. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    3. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    4. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    5. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    6. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    7. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    8. Chang, Lo-Bin & Geman, Stuart, 2013. "Empirical scaling laws and the aggregation of non-stationary data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5046-5052.
    9. Cristescu, Constantin P. & Stan, Cristina & Scarlat, Eugen I. & Minea, Teofil & Cristescu, Cristina M., 2012. "Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2623-2635.
    10. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    11. Paulo Ferreira & Marcus Fernandes da Silva & Idaraí Santos de Santana, 2019. "Detrended Correlation Coefficients Between Exchange Rate (in Dollars) and Stock Markets in the World’s Largest Economies," Economies, MDPI, vol. 7(1), pages 1-11, February.
    12. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    13. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
    14. He, Ling-Yun & Fan, Ying & Wei, Yi-Ming, 2009. "Impact of speculator's expectations of returns and time scales of investment on crude oil price behaviors," Energy Economics, Elsevier, vol. 31(1), pages 77-84, January.
    15. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    16. La Spada Gabriele & Lillo Fabrizio, 2014. "The effect of round-off error on long memory processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 1-38, September.
    17. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    18. Maciel, Leandro, 2021. "A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 38-56.
    19. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    20. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:vision:v:28:y:2024:i:2:p:193-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.