IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v629y2024i8012d10.1038_s41586-024-07367-3.html
   My bibliography  Save this article

Sleep pressure modulates single-neuron synapse number in zebrafish

Author

Listed:
  • Anya Suppermpool

    (University College London
    University College London)

  • Declan G. Lyons

    (University College London)

  • Elizabeth Broom

    (University College London)

  • Jason Rihel

    (University College London)

Abstract

Sleep is a nearly universal behaviour with unclear functions1. The synaptic homeostasis hypothesis proposes that sleep is required to renormalize the increases in synaptic number and strength that occur during wakefulness2. Some studies examining either large neuronal populations3 or small patches of dendrites4 have found evidence consistent with the synaptic homeostasis hypothesis, but whether sleep merely functions as a permissive state or actively promotes synaptic downregulation at the scale of whole neurons is unclear. Here, by repeatedly imaging all excitatory synapses on single neurons across sleep–wake states of zebrafish larvae, we show that synapses are gained during periods of wake (either spontaneous or forced) and lost during sleep in a neuron-subtype-dependent manner. However, synapse loss is greatest during sleep associated with high sleep pressure after prolonged wakefulness, and lowest in the latter half of an undisrupted night. Conversely, sleep induced pharmacologically during periods of low sleep pressure is insufficient to trigger synapse loss unless adenosine levels are boosted while noradrenergic tone is inhibited. We conclude that sleep-dependent synapse loss is regulated by sleep pressure at the level of the single neuron and that not all sleep periods are equally capable of fulfilling the functions of synaptic homeostasis.

Suggested Citation

  • Anya Suppermpool & Declan G. Lyons & Elizabeth Broom & Jason Rihel, 2024. "Sleep pressure modulates single-neuron synapse number in zebrafish," Nature, Nature, vol. 629(8012), pages 639-645, May.
  • Handle: RePEc:nat:nature:v:629:y:2024:i:8012:d:10.1038_s41586-024-07367-3
    DOI: 10.1038/s41586-024-07367-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07367-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07367-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:629:y:2024:i:8012:d:10.1038_s41586-024-07367-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.