IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v4y2021i1d10.1038_s41893-020-00607-0.html
   My bibliography  Save this article

Circular economy strategies for electric vehicle batteries reduce reliance on raw materials

Author

Listed:
  • Joris Baars

    (Newcastle University)

  • Teresa Domenech

    (University College London)

  • Raimund Bleischwitz

    (University College London)

  • Hans Eric Melin

    (Circular Energy Storage Research and Consulting)

  • Oliver Heidrich

    (Newcastle University)

Abstract

The wide adoption of lithium-ion batteries used in electric vehicles will require increased natural resources for the automotive industry. The expected rapid increase in batteries could result in new resource challenges and supply-chain risks. To strengthen the resilience and sustainability of automotive supply chains and reduce primary resource requirements, circular economy strategies are needed. Here we illustrate how these strategies can reduce the extraction of primary raw materials, that is, cobalt supplies. Material flow analysis is applied to understand current and future flows of cobalt embedded in electric vehicle batteries across the European Union. A reference scenario is presented and compared with four strategies: technology-driven substitution and technology-driven reduction of cobalt, new business models to stimulate battery reuse/recycling and policy-driven strategy to increase recycling. We find that new technologies provide the most promising strategies to reduce the reliance on cobalt substantially but could result in burden shifting such as an increase in nickel demand. To avoid the latter, technological developments should be combined with an efficient recycling system. We conclude that more-ambitious circular economy strategies, at both government and business levels, are urgently needed to address current and future resource challenges across the supply chain successfully.

Suggested Citation

  • Joris Baars & Teresa Domenech & Raimund Bleischwitz & Hans Eric Melin & Oliver Heidrich, 2021. "Circular economy strategies for electric vehicle batteries reduce reliance on raw materials," Nature Sustainability, Nature, vol. 4(1), pages 71-79, January.
  • Handle: RePEc:nat:natsus:v:4:y:2021:i:1:d:10.1038_s41893-020-00607-0
    DOI: 10.1038/s41893-020-00607-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-00607-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-00607-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:4:y:2021:i:1:d:10.1038_s41893-020-00607-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.