IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v24y2022i2d10.1007_s10109-021-00362-6.html
   My bibliography  Save this article

Generating pseudo-absence samples of invasive species based on outlier detection in the geographical characteristic space

Author

Listed:
  • Wentao Yang

    (Hunan University of Science and Technology)

  • Huaxi He

    (Hunan University of Science and Technology)

  • Dongsheng Wei

    (Central South University of Forest and Technology)

  • Hao Chen

    (Hunan University of Science and Technology)

Abstract

Obtaining the diversity samples of invasive alien species (species presence and absence samples) is vital for species distribution models. However, because of the enhanced focus on collecting presence samples, most datasets regarding invasive species lack explicit absence samples. Thus, the generation of effective pseudo-absence samples of invasive species is a critical issue for building species distribution models. This paper proposes a pseudo-absence sampling approach based on outlier detection in the geographical characteristic space. First, principal component analysis is used to model the linear correlation of the original variables, and a statistical index is built to determine the weight of the principal components. Next, in the geographical characteristic space built based on the principal components and their corresponding weights, the local outlier factor is obtained to identify the pseudo-absence samples. The dataset regarding the invasive species Erigeron annuus in the Yangtze River Economic Belt is used to illustrate the general process of the proposed approach. The prediction results from logistical regression with the proposed approach are better than these with the spatial random sampling, surface range envelope, and one-class support vector machine models. These findings validate the effectiveness of the proposed sampling approach.

Suggested Citation

  • Wentao Yang & Huaxi He & Dongsheng Wei & Hao Chen, 2022. "Generating pseudo-absence samples of invasive species based on outlier detection in the geographical characteristic space," Journal of Geographical Systems, Springer, vol. 24(2), pages 261-279, April.
  • Handle: RePEc:kap:jgeosy:v:24:y:2022:i:2:d:10.1007_s10109-021-00362-6
    DOI: 10.1007/s10109-021-00362-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-021-00362-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-021-00362-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    2. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    3. Douglas M. Hawkins, 1980. "Critical Values for Identifying Outliers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 95-96, March.
    4. Senait D Senay & Susan P Worner & Takayoshi Ikeda, 2013. "Novel Three-Step Pseudo-Absence Selection Technique for Improved Species Distribution Modelling," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-16, August.
    5. Pouteau, Robin & Meyer, Jean-Yves & Stoll, Benoît, 2011. "A SVM-based model for predicting distribution of the invasive tree Miconia calvescens in tropical rainforests," Ecological Modelling, Elsevier, vol. 222(15), pages 2631-2641.
    6. Domisch, Sami & Kuemmerlen, Mathias & Jähnig, Sonja C. & Haase, Peter, 2013. "Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota," Ecological Modelling, Elsevier, vol. 257(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    2. Iacopo Bernetti & Veronica Alampi Sottini & Lorenzo Bambi & Elena Barbierato & Tommaso Borghini & Irene Capecchi & Claudio Saragosa, 2020. "Urban Niche Assessment: An Approach Integrating Social Media Analysis, Spatial Urban Indicators and Geo-Statistical Techniques," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    3. Whitford, Anna M. & Shipley, Benjamin R. & McGuire, Jenny L., 2024. "The influence of the number and distribution of background points in presence-background species distribution models," Ecological Modelling, Elsevier, vol. 488(C).
    4. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    5. Somaye Vaissi, 2021. "Design of Protected Area by Tracking and Excluding the Effects of Climate and Landscape Change: A Case Study Using Neurergus derjugini," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    6. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yang Yi & Mingchang Shi & Jialin Liu & Chen Zhang & Xiaoding Yi & Sha Li & Chunyang Chen & Liangzhao Lin, 2022. "Spatial Distribution of Precise Suitability of Plantation: A Case Study of Main Coniferous Forests in Hubei Province, China," Land, MDPI, vol. 11(5), pages 1-19, May.
    8. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    9. Andrzej Chmielowiec, 2021. "Algorithm for error-free determination of the variance of all contiguous subsequences and fixed-length contiguous subsequences for a sequence of industrial measurement data," Computational Statistics, Springer, vol. 36(4), pages 2813-2840, December.
    10. Marc Chataigner & Stéphane Crépey & Jiang Pu, 2020. "Nowcasting Networks," Post-Print hal-03910123, HAL.
    11. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    12. David Juárez-Varón & Victoria Tur-Viñes & Alejandro Rabasa-Dolado & Kristina Polotskaya, 2020. "An Adaptive Machine Learning Methodology Applied to Neuromarketing Analysis: Prediction of Consumer Behaviour Regarding the Key Elements of the Packaging Design of an Educational Toy," Social Sciences, MDPI, vol. 9(9), pages 1-23, September.
    13. Zhongqiu Wang & Guan Yuan & Haoran Pei & Yanmei Zhang & Xiao Liu, 2020. "Unsupervised learning trajectory anomaly detection algorithm based on deep representation," International Journal of Distributed Sensor Networks, , vol. 16(12), pages 15501477209, December.
    14. Arata, Linda & Fabrizi, Enrico & Sckokai, Paolo, 2020. "A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data," Economic Modelling, Elsevier, vol. 90(C), pages 190-208.
    15. Wentao Yang & Min Deng & Jianbo Tang & Liang Luo, 2023. "Geographically weighted regression with the integration of machine learning for spatial prediction," Journal of Geographical Systems, Springer, vol. 25(2), pages 213-236, April.
    16. Fournier, Nicholas PhD & Farid, Yashar Zeinali PhD & Patire, Anthony David PhD, 2021. "Potential Erroneous Degradation of High Occupancy Vehicle (HOV) Facilities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3z76r7tj, Institute of Transportation Studies, UC Berkeley.
    17. Puteri Paramita & Zuduo Zheng & Md Mazharul Haque & Simon Washington & Paul Hyland, 2018. "User satisfaction with train fares: A comparative analysis in five Australian cities," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-26, June.
    18. Grimmett, Liam & Whitsed, Rachel & Horta, Ana, 2020. "Presence-only species distribution models are sensitive to sample prevalence: Evaluating models using spatial prediction stability and accuracy metrics," Ecological Modelling, Elsevier, vol. 431(C).
    19. Liqun Diao & Grace Y. Yi, 2023. "Classification Trees with Mismeasured Responses," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 168-191, April.
    20. An T. N. Dang & Lalit Kumar & Michael Reid, 2020. "Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam," Sustainability, MDPI, vol. 12(22), pages 1-21, November.

    More about this item

    Keywords

    Invasive species; Spatial prediction; Spatial sampling; Principal component analysis; Local outlier detection;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:24:y:2022:i:2:d:10.1007_s10109-021-00362-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.