IDEAS home Printed from https://ideas.repec.org/a/inm/orited/v20y2019i1p41-43.html
   My bibliography  Save this article

Case Article—Agile Auto Sub Assemblies: Challenges in Managing Growth, Resource Productivity, and Demand Variability

Author

Listed:
  • Balaraman Rajan

    (California State University, East Bay, Hayward, California 94542;)

  • N. Ravichandran

    (Indian Institute of Management Ahmedabad, Ahmedabad, Gujarat 380015, India)

Abstract

The key objective of the case study is to help students understand the nuances of assembly line design without having to manage a huge problem context. The case study provides a platform for an engaging discussion on assembly line balancing and related concepts. The case is developed in a setting of an auto subassembly manufacturer that currently operates two lines. The management is confronted with a situation in which the production requirements are increased. The management needs to decide between hiring additional workers, reconfiguring the assembly lines, or both to meet the new demand. The production manager suggests a simple linear allocation of resources based on demand. Its validity and various other options are investigated to manage the projected volume. The following considerations are used to evaluate each option: capacity utilization, labor utilization and flexibility of operations, cost of overtime, cost of new recruitment, and inventory. As an extension, we also discuss the trade-offs involved in level-production strategy and a market-driven strategy when the demand profile is variable.

Suggested Citation

  • Balaraman Rajan & N. Ravichandran, 2019. "Case Article—Agile Auto Sub Assemblies: Challenges in Managing Growth, Resource Productivity, and Demand Variability," INFORMS Transactions on Education, INFORMS, vol. 20(1), pages 41-43, September.
  • Handle: RePEc:inm:orited:v:20:y:2019:i:1:p:41-43
    DOI: 10.1287/ited.2019.0206ca
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ited.2019.0206ca
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ited.2019.0206ca?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreu-Casas, Enric & García-Villoria, Alberto & Pastor, Rafael, 2022. "Multi-manned assembly line balancing problem with dependent task times: a heuristic based on solving a partition problem with constraints," European Journal of Operational Research, Elsevier, vol. 302(1), pages 96-116.
    2. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    3. Hsiu-Hsueh Kao & Din-Horng Yeh & Yi-Hsien Wang, 2011. "Resource Constrained Assembly Line Balancing Problem Solved with Ranked Positional Weight Rule," Review of Economics & Finance, Better Advances Press, Canada, vol. 1, pages 71-80, November.
    4. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    5. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    6. Raphael Kramer & Mauro Dell’Amico & Manuel Iori, 2017. "A batching-move iterated local search algorithm for the bin packing problem with generalized precedence constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6288-6304, November.
    7. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    8. Luis J. Novoa & Ahmad I. Jarrah & David P. Morton, 2018. "Flow Balancing with Uncertain Demand for Automated Package Sorting Centers," Transportation Science, INFORMS, vol. 52(1), pages 210-227, January.
    9. Parames Chutima, 2022. "A comprehensive review of robotic assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 1-34, January.
    10. Corominas, Albert & Pastor, Rafael & Plans, Joan, 2008. "Balancing assembly line with skilled and unskilled workers," Omega, Elsevier, vol. 36(6), pages 1126-1132, December.
    11. Rifat G. Ozdemir & Tugbanur Sezen, 2016. "Component inventory allocation in assembly line balancing with fuzzy performance ratings," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 8(1), pages 29-46.
    12. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    13. Pereira, Jordi & Ritt, Marcus, 2023. "Exact and heuristic methods for a workload allocation problem with chain precedence constraints," European Journal of Operational Research, Elsevier, vol. 309(1), pages 387-398.
    14. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.
    15. Roemer, Thomas A. & Ahmadi, Reza, 2010. "Models for concurrent product and process design," European Journal of Operational Research, Elsevier, vol. 203(3), pages 601-613, June.
    16. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    17. Tiacci, Lorenzo & Mimmi, Mario, 2018. "Integrating ergonomic risks evaluation through OCRA index and balancing/sequencing decisions for mixed model stochastic asynchronous assembly lines," Omega, Elsevier, vol. 78(C), pages 112-138.
    18. Andreas Hottenrott & Martin Grunow, 2019. "Flexible layouts for the mixed-model assembly of heterogeneous vehicles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 943-979, December.
    19. Fliedner, Malte & Boysen, Nils, 2008. "Solving the car sequencing problem via Branch & Bound," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1023-1042, December.
    20. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orited:v:20:y:2019:i:1:p:41-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.