IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p8931-d869321.html
   My bibliography  Save this article

Spatial Syndromic Surveillance and COVID-19 in the U.S.: Local Cluster Mapping for Pandemic Preparedness

Author

Listed:
  • Andrew J. Curtis

    (Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA)

  • Jayakrishnan Ajayakumar

    (Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA)

  • Jacqueline Curtis

    (Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA)

  • Sam Brown

    (University Hospitals, Cleveland, OH 44106, USA)

Abstract

Maps have become the de facto primary mode of visualizing the COVID-19 pandemic, from identifying local disease and vaccination patterns to understanding global trends. In addition to their widespread utilization for public communication, there have been a variety of advances in spatial methods created for localized operational needs. While broader dissemination of this more granular work is not commonplace due to the protections under Health Insurance Portability and Accountability Act (HIPAA), its role has been foundational to pandemic response for health systems, hospitals, and government agencies. In contrast to the retrospective views provided by the aggregated geographies found in the public domain, or those often utilized for academic research, operational response requires near real-time mapping based on continuously flowing address level data. This paper describes the opportunities and challenges presented in emergent disease mapping using dynamic patient data in the response to COVID-19 for northeast Ohio for the period 2020 to 2022. More specifically it shows how a new clustering tool developed by geographers in the initial phases of the pandemic to handle operational mapping continues to evolve with shifting pandemic needs, including new variant surges, vaccine targeting, and most recently, testing data shortfalls. This paper also demonstrates how the geographic approach applied provides the framework needed for future pandemic preparedness.

Suggested Citation

  • Andrew J. Curtis & Jayakrishnan Ajayakumar & Jacqueline Curtis & Sam Brown, 2022. "Spatial Syndromic Surveillance and COVID-19 in the U.S.: Local Cluster Mapping for Pandemic Preparedness," IJERPH, MDPI, vol. 19(15), pages 1-15, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:8931-:d:869321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/8931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/8931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Kimberly Miller & Jennifer Catherine Gordon & Jacqueline W. Curtis & Jayakrishnan Ajayakumar & Fredrick R. Schumacher & Stefanie Avril, 2022. "The Geographic Context of Racial Disparities in Aggressive Endometrial Cancer Subtypes: Integrating Social and Environmental Aspects to Discern Biological Outcomes," IJERPH, MDPI, vol. 19(14), pages 1-12, July.
    2. Desmet, Klaus & Wacziarg, Romain, 2022. "JUE Insight: Understanding spatial variation in COVID-19 across the United States," Journal of Urban Economics, Elsevier, vol. 127(C).
    3. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. X. Angela Yao & Andrew Crooks & Bin Jiang & Jukka Krisp & Xintao Liu & Haosheng Huang, 2023. "An overview of urban analytical approaches to combating the Covid-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1133-1143, June.
    3. Yin Huang & Runda Liu & Shumin Huang & Gege Yang & Xiaofan Zhang & Yin Qin & Lisha Mao & Sishi Sheng & Biao Huang, 2021. "Imbalance and breakout in the post-epidemic era: Research into the spatial patterns of freight demand network in six provinces of central China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-18, April.
    4. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    5. Mingke Xie & Yang Chen & Luliang Tang, 2022. "Exploring the Impact of Localized COVID-19 Events on Intercity Mobility during the Normalized Prevention and Control Period in China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    6. Pan, Yu & He, Sylvia Y., 2022. "Analyzing COVID-19’s impact on the travel mobility of various social groups in China’s Greater Bay Area via mobile phone big data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 263-281.
    7. Tu, Yunbo & Meng, Xinzhu & Alzahrani, Abdullah Khames & Zhang, Tonghua, 2023. "Multi-objective optimization and nonlinear dynamics for sub-healthy COVID-19 epidemic model subject to self-diffusion and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Jiansuo Pei & Gaaitzen de Vries & Meng Zhang, 2022. "International trade and Covid‐19: City‐level evidence from China's lockdown policy," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 670-695, June.
    9. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.
    10. Ye, Maoxin & Lyu, Zeyu, 2020. "Trust, risk perception, and COVID-19 infections: Evidence from multilevel analyses of combined original dataset in China," Social Science & Medicine, Elsevier, vol. 265(C).
    11. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    12. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    13. Yang, Senyan & Ning, Lianju & Jiang, Tingfeng & He, Yingqi, 2021. "Dynamic impacts of COVID-19 pandemic on the regional express logistics: Evidence from China," Transport Policy, Elsevier, vol. 111(C), pages 111-124.
    14. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    15. Fang, Hanming & Wang, Long & Yang, Yang, 2020. "Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China," Journal of Public Economics, Elsevier, vol. 191(C).
    16. Qiushi Chen & Michiko Tsubaki & Yasuhiro Minami & Kazutoshi Fujibayashi & Tetsuro Yumoto & Junzo Kamei & Yuka Yamada & Hidenori Kominato & Hideki Oono & Toshio Naito, 2021. "Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways," IJERPH, MDPI, vol. 18(14), pages 1-32, July.
    17. Dasgupta,Susmita & Wheeler,David R., 2020. "Modeling and Predicting the Spread of Covid-19: Comparative Results for the United States, thePhilippines, and South Africa," Policy Research Working Paper Series 9419, The World Bank.
    18. Mengyue Yuan & Tong Liu & Chao Yang, 2022. "Exploring the Relationship among Human Activities, COVID-19 Morbidity, and At-Risk Areas Using Location-Based Social Media Data: Knowledge about the Early Pandemic Stage in Wuhan," IJERPH, MDPI, vol. 19(11), pages 1-22, May.
    19. Stefano Maria Iacus & Carlos Santamaria & Francesco Sermi & Spyridon Spyratos & Dario Tarchi & Michele Vespe, 2022. "Mobility functional areas and COVID-19 spread," Transportation, Springer, vol. 49(6), pages 1999-2025, December.
    20. Shi, Wei & Qiu, Yun & Yu, Pei & Chen, Xi, 2022. "Optimal Travel Restrictions in Epidemics," IZA Discussion Papers 15290, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:8931-:d:869321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.