IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i3p486-d135651.html
   My bibliography  Save this article

Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador

Author

Listed:
  • Sadie J. Ryan

    (Quantitative Disease Ecology and Conservation Lab, Department of Geography, University of Florida, Gainesville, FL 32610 USA
    Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA)

  • Anna M. Stewart-Ibarra

    (Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA)

  • Eunice Ordóñez-Enireb

    (Laboratorio para Investigaciones Biomédicas, FCV, Escuela Superior Politécnica del Litoral, Guayaquil 090101, Ecuador)

  • Winnie Chu

    (Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA)

  • Julia L. Finkelstein

    (Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA)

  • Christine A. King

    (Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA)

  • Luis E. Escobar

    (Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
    Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA)

  • Christina Lupone

    (Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA)

  • Froilan Heras

    (Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA)

  • Erica Tauzer

    (Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA)

  • Egan Waggoner

    (Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA)

  • Tyler G. James

    (Quantitative Disease Ecology and Conservation Lab, Department of Geography, University of Florida, Gainesville, FL 32610 USA
    Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA)

  • Washington B. Cárdenas

    (Laboratorio para Investigaciones Biomédicas, FCV, Escuela Superior Politécnica del Litoral, Guayaquil 090101, Ecuador)

  • Mark Polhemus

    (Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA)

Abstract

Cholera emergence is strongly linked to local environmental and ecological context. The 1991–2004 pandemic emerged in Perú and spread north into Ecuador’s El Oro province, making this a key site for potential re-emergence. Machala, El Oro, is a port city of 250,000 inhabitants, near the Peruvian border. Many livelihoods depend on the estuarine system, from fishing for subsistence and trade, to domestic water use. In 2014, we conducted biweekly sampling for 10 months in five estuarine locations, across a gradient of human use, and ranging from inland to ocean. We measured water-specific environmental variables implicated in cholera growth and persistence: pH, temperature, salinity, and algal concentration, and evaluated samples in five months for pathogenic and non-pathogenic Vibrio cholerae , by polymerase chain reaction (PCR). We found environmental persistence of pandemic strains O1 and O139, but no evidence for toxigenic strains. Vibrio cholerae presence was coupled to algal and salinity concentration, and sites exhibited considerable seasonal and spatial heterogeneity. This study indicates that environmental conditions in Machala are optimal for cholera re-emergence, with risk peaking during September, and higher risk near urban periphery low-income communities. This highlights a need for surveillance of this coupled cholera–estuarine system to anticipate potential future cholera outbreaks.

Suggested Citation

  • Sadie J. Ryan & Anna M. Stewart-Ibarra & Eunice Ordóñez-Enireb & Winnie Chu & Julia L. Finkelstein & Christine A. King & Luis E. Escobar & Christina Lupone & Froilan Heras & Erica Tauzer & Egan Waggon, 2018. "Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador," IJERPH, MDPI, vol. 15(3), pages 1-13, March.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:486-:d:135651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/3/486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/3/486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    2. Ankur Mutreja & Dong Wook Kim & Nicholas R. Thomson & Thomas R. Connor & Je Hee Lee & Samuel Kariuki & Nicholas J. Croucher & Seon Young Choi & Simon R. Harris & Michael Lebens & Swapan Kumar Niyogi &, 2011. "Evidence for several waves of global transmission in the seventh cholera pandemic," Nature, Nature, vol. 477(7365), pages 462-465, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    2. Ping Lan & Li Guo & Yaling Zhang & Guanghua Qin & Xiaodong Li & Carlos R. Mello & Elizabeth W. Boyer & Yehui Zhang & Bihang Fan, 2024. "Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events," Climatic Change, Springer, vol. 177(2), pages 1-20, February.
    3. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    4. Céline Grislain-Letrémy & Bertrand Villeneuve, 2019. "Natural disasters, land-use, and insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 44(1), pages 54-86, March.
    5. Martin Vezér & Alexander Bakker & Klaus Keller & Nancy Tuana, 2018. "Epistemic and ethical trade-offs in decision analytical modelling," Climatic Change, Springer, vol. 147(1), pages 1-10, March.
    6. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    7. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    8. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    9. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    10. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    11. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    12. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    13. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    14. Mercy J. Borbor-Cordova & Geremy Ger & Angel A. Valdiviezo-Ajila & Mijail Arias-Hidalgo & David Matamoros & Indira Nolivos & Gonzalo Menoscal-Aldas & Federica Valle & Alessandro Pezzoli & Maria del Pi, 2020. "An Operational Framework for Urban Vulnerability to Floods in the Guayas Estuary Region: The Duran Case Study," Sustainability, MDPI, vol. 12(24), pages 1-23, December.
    15. Jim Gower, 2015. "A sea surface height control dam at the Strait of Gibraltar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2109-2120, September.
    16. Jiake Li & Jiayu Gao & Ning Li & Yutong Yao & Yishuo Jiang, 2023. "Risk Assessment and Management Method of Urban Flood Disaster," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2001-2018, March.
    17. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    18. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    19. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    20. Faith Ka Shun Chan & Xinbing Gu & Yunfei Qi & Dimple Thadani & Yongqin David Chen & Xiaohui Lu & Lei Li & James Griffiths & Fangfang Zhu & Jianfeng Li & Wendy Y. Chen, 2022. "Lessons learnt from Typhoons Fitow and In-Fa: implications for improving urban flood resilience in Asian Coastal Cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2397-2404, February.

    More about this item

    Keywords

    cholera; Ecuador; Vibrio cholerae ; strains O1 and O139; Vibrio ; temperature; spatial;
    All these keywords.

    JEL classification:

    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:486-:d:135651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.