IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v4y2019i1p29-d204823.html
   My bibliography  Save this article

Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany

Author

Listed:
  • Marcus Eichhorn

    (Department of Bioenergy, Helmholtz Centre for Environmental Research GmbH-UFZ, 04318 Leipzig, Germany)

  • Mattes Scheftelowitz

    (Department of Bioenergy Systems, Deutsches Biomasseforschungszentrum DBFZ, 04347 Leipzig, Germany)

  • Matthias Reichmuth

    (Leipziger Institut für Energie GmbH, Lessingstraße 2, 04109 Leipzig, Germany)

  • Christian Lorenz

    (Leipziger Institut für Energie GmbH, Lessingstraße 2, 04109 Leipzig, Germany)

  • Kyriakos Louca

    (Leipziger Institut für Energie GmbH, Lessingstraße 2, 04109 Leipzig, Germany)

  • Alexander Schiffler

    (Leipziger Institut für Energie GmbH, Lessingstraße 2, 04109 Leipzig, Germany)

  • Rita Keuneke

    (Ingenieurbüro Floecksmühle GmbH, 52066 Aachen, Germany)

  • Martin Bauschmann

    (Department of Bioenergy Systems, Deutsches Biomasseforschungszentrum DBFZ, 04347 Leipzig, Germany)

  • Jens Ponitka

    (Department of Nature Conservation and Renewable Energy, German Federal Agency for Nature Conservation, 04277 Leipzig, Germany)

  • David Manske

    (Department of Bioenergy, Helmholtz Centre for Environmental Research GmbH-UFZ, 04318 Leipzig, Germany
    Department of Bioenergy Systems, Deutsches Biomasseforschungszentrum DBFZ, 04347 Leipzig, Germany)

  • Daniela Thrän

    (Department of Bioenergy, Helmholtz Centre for Environmental Research GmbH-UFZ, 04318 Leipzig, Germany
    Department of Bioenergy Systems, Deutsches Biomasseforschungszentrum DBFZ, 04347 Leipzig, Germany)

Abstract

The expansion of renewable energy technologies, accompanied by an increasingly decentralized supply structure, raises many research questions regarding the structure, dimension, and impacts of the electricity supply network. In this context, information on renewable energy plants, particularly their spatial distribution and key parameters—e.g., installed capacity, total size, and required space—are more and more important for public decision makers and different scientific domains, such as energy system analysis and impact assessment. The dataset described in this paper covers the spatial distribution, installed capacity, and commissioning year of wind turbines, photovoltaic field systems, and bio- and river hydro power plants in Germany. Collected from different online sources and authorities, the data have been thoroughly cross-checked, cleaned, and merged to generate validated and complete datasets. The paper concludes with notes on the practical use of the dataset in an environmental impact monitoring framework and other potential research or policy settings.

Suggested Citation

  • Marcus Eichhorn & Mattes Scheftelowitz & Matthias Reichmuth & Christian Lorenz & Kyriakos Louca & Alexander Schiffler & Rita Keuneke & Martin Bauschmann & Jens Ponitka & David Manske & Daniela Thrän, 2019. "Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany," Data, MDPI, vol. 4(1), pages 1-15, February.
  • Handle: RePEc:gam:jdataj:v:4:y:2019:i:1:p:29-:d:204823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/4/1/29/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/4/1/29/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
    2. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    3. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    4. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    5. Killinger, Sven & Mainzer, Kai & McKenna, Russell & Kreifels, Niklas & Fichtner, Wolf, 2015. "A regional optimisation of renewable energy supply from wind and photovoltaics with respect to three key energy-political objectives," Energy, Elsevier, vol. 84(C), pages 563-574.
    6. Quek, Augustine & Ee, Alvin & Ng, Adam & Wah, Tong Yen, 2018. "Challenges in Environmental Sustainability of renewable energy options in Singapore," Energy Policy, Elsevier, vol. 122(C), pages 388-394.
    7. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    8. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    9. Kourkoumpas, Dimitrios-Sotirios & Benekos, Georgios & Nikolopoulos, Nikolaos & Karellas, Sotirios & Grammelis, Panagiotis & Kakaras, Emmanouel, 2018. "A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions," Applied Energy, Elsevier, vol. 231(C), pages 380-398.
    10. Möst, Dominik & Fichtner, Wolf, 2010. "Renewable energy sources in European energy supply and interactions with emission trading," Energy Policy, Elsevier, vol. 38(6), pages 2898-2910, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Welson Bassi & Alcantaro Lemes Rodrigues & Ildo Luis Sauer, 2023. "Dataset on SCADA Data of an Urban Small Wind Turbine Operation in São Paulo, Brazil," Data, MDPI, vol. 8(3), pages 1-9, February.
    2. David Manske & Lukas Grosch & Julius Schmiedt & Nora Mittelstädt & Daniela Thrän, 2022. "Geo-Locations and System Data of Renewable Energy Installations in Germany," Data, MDPI, vol. 7(9), pages 1-15, September.
    3. Romane Bouchard & Djordje Romanic, 2023. "Monte Carlo modeling of tornado hazard to wind turbines in Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3899-3923, April.
    4. Hedenus, F. & Jakobsson, N. & Reichenberg, L. & Mattsson, N., 2022. "Historical wind deployment and implications for energy system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Stegmaier, Vincent & Krause, Melanie, 2023. "Headwind at the Ballot Box? - The Effect of Visible Wind Turbines on Green Party Support," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277671, Verein für Socialpolitik / German Economic Association.
    6. Idiano D’Adamo & Massimo Gastaldi & Piergiuseppe Morone, 2020. "Dataset for Assessing the Economic Performance of a Residential PV Plant: The Analysis of a New Policy Proposal," Data, MDPI, vol. 5(4), pages 1-5, October.
    7. Jennifer Kreklow & Björn Tetzlaff & Gerald Kuhnt & Benjamin Burkhard, 2019. "A Rainfall Data Intercomparison Dataset of RADKLIM, RADOLAN, and Rain Gauge Data for Germany," Data, MDPI, vol. 4(3), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    2. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    3. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    5. Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
    6. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    7. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Eichhorn, Marcus & Tafarte, Philip & Thrän, Daniela, 2017. "Towards energy landscapes – “Pathfinder for sustainable wind power locations”," Energy, Elsevier, vol. 134(C), pages 611-621.
    9. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    10. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    11. Fei Yang & Chunchen Wang, 2023. "Clean energy, emission trading policy, and CO2 emissions: Evidence from China," Energy & Environment, , vol. 34(5), pages 1657-1673, August.
    12. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    13. Tariq Ullah & Krzysztof Sobczak & Grzegorz Liśkiewicz & Amjid Khan, 2022. "Two-Dimensional URANS Numerical Investigation of Critical Parameters on a Pitch Oscillating VAWT Airfoil under Dynamic Stall," Energies, MDPI, vol. 15(15), pages 1-19, August.
    14. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    15. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    16. Ahlborg, Helene & Hammar, Linus, 2014. "Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies," Renewable Energy, Elsevier, vol. 61(C), pages 117-124.
    17. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    18. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    19. Lee, Kyung-Sook & Kim, Ju-Hee & Yoo, Seung-Hoon, 2021. "Would people pay a price premium for electricity from domestic wind power facilities? The case of South Korea," Energy Policy, Elsevier, vol. 156(C).
    20. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:4:y:2019:i:1:p:29-:d:204823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.