IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v145y2024icp37-54.html
   My bibliography  Save this article

The impact of civil airspace policies on the viability of adopting autonomous unmanned aerial vehicles in last-mile applications

Author

Listed:
  • ElSayed, Mo
  • Foda, Ahmed
  • Mohamed, Moataz

Abstract

This study evaluates how various UAV flight policies affect energy consumption and the required charging infrastructure in last-mile parcel delivery applications. International UAV policies are reviewed and subcategorized into nine categories based on their stringency. Assuming autonomous operations of small-size quadrotor UAVs (13 min flight range), an experimentally verified energy model and demand data are used to simulate 3D trajectories of UAV missions in a digital-twin model, simulating last-mile parcel deliveries in Toronto. A novel optimization model is developed to minimize the allocated charging stations. The results show that the maximum and minimum altitude limitations increase the required charging stations by up to 52%. Minimum horizontal clearing distance increases the required charging stations by up to 75%. The results highlight increased cost per parcel delivery associated with policy strictness ranging from $0.078 (lean policies) to $0.086 (strict policies). Overall, the results highlight the need for contextual-based policy solutions.

Suggested Citation

  • ElSayed, Mo & Foda, Ahmed & Mohamed, Moataz, 2024. "The impact of civil airspace policies on the viability of adopting autonomous unmanned aerial vehicles in last-mile applications," Transport Policy, Elsevier, vol. 145(C), pages 37-54.
  • Handle: RePEc:eee:trapol:v:145:y:2024:i:c:p:37-54
    DOI: 10.1016/j.tranpol.2023.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23002640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Outay, Fatma & Mengash, Hanan Abdullah & Adnan, Muhammad, 2020. "Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 116-129.
    2. Mo ElSayed & Moataz Mohamed, 2022. "The Impact of Airspace Discretization on the Energy Consumption of Autonomous Unmanned Aerial Vehicles (Drones)," Energies, MDPI, vol. 15(14), pages 1-23, July.
    3. Mohamed, Nader & Al-Jaroodi, Jameela & Jawhar, Imad & Idries, Ahmed & Mohammed, Farhan, 2020. "Unmanned aerial vehicles applications in future smart cities," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    4. Iman Dayarian & Martin Savelsbergh & John-Paul Clarke, 2020. "Same-Day Delivery with Drone Resupply," Transportation Science, INFORMS, vol. 54(1), pages 229-249, January.
    5. Almulhem, Ahmad, 2020. "Threat modeling of a multi-UAV system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 290-295.
    6. Fabio Borghetti & Claudia Caballini & Angela Carboni & Gaia Grossato & Roberto Maja & Benedetto Barabino, 2022. "The Use of Drones for Last-Mile Delivery: A Numerical Case Study in Milan, Italy," Sustainability, MDPI, vol. 14(3), pages 1-19, February.
    7. Lewis, Emily & Ponnock, Jesse & Cherqaoui, Qamar & Holmdahl, Scott & Johnson, Yus & Wong, Alfred & Oliver Gao, H., 2021. "Architecting urban air mobility airport shuttling systems with case studies: Atlanta, Los Angeles, and Dallas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 423-444.
    8. Cohen, Tom & Jones, Peter, 2020. "Technological advances relevant to transport – understanding what drives them," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 80-95.
    9. Lemardelé, Clément & Estrada, Miquel & Pagès, Laia & Bachofner, Mónika, 2021. "Potentialities of drones and ground autonomous delivery devices for last-mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    10. Merkert, Rico & Beck, Matthew J. & Bushell, James, 2021. "Will It Fly? Adoption of the road pricing framework to manage drone use of airspace," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 156-170.
    11. Nemer, Ibrahim A. & Sheltami, Tarek R. & Mahmoud, Ashraf S., 2020. "A game theoretic approach of deployment a multiple UAVs for optimal coverage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 215-230.
    12. Joshuah K. Stolaroff & Constantine Samaras & Emma R. O’Neill & Alia Lubers & Alexandra S. Mitchell & Daniel Ceperley, 2018. "Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    13. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    14. Joshuah K. Stolaroff & Constantine Samaras & Emma R. O’Neill & Alia Lubers & Alexandra S. Mitchell & Daniel Ceperley, 2018. "Author Correction: Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    15. Al Haddad, Christelle & Chaniotakis, Emmanouil & Straubinger, Anna & Plötner, Kay & Antoniou, Constantinos, 2020. "Factors affecting the adoption and use of urban air mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 696-712.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Kähler, Svantje T. & Abben, Thomas & Luna-Rodriguez, Aquiles & Tomat, Miriam & Jacobsen, Thomas, 2022. "An assessment of the acceptance and aesthetics of UAVs and helicopters through an experiment and a survey," Technology in Society, Elsevier, vol. 71(C).
    3. Pahwa, Anmol & Jaller, Miguel, 2022. "A cost-based comparative analysis of different last-mile strategies for e-commerce delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    5. Dukkanci, Okan & Koberstein, Achim & Kara, Bahar Y., 2023. "Drones for relief logistics under uncertainty after an earthquake," European Journal of Operational Research, Elsevier, vol. 310(1), pages 117-132.
    6. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    7. Decker, Christopher & Chiambaretto, Paul, 2022. "Economic policy choices and trade-offs for Unmanned aircraft systems Traffic Management (UTM): Insights from Europe and the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 40-58.
    8. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    9. Kotzab, Herbert & Yumurtacı Hüseyinoğlu, Işık Özge & Şen, Irmak & Mena, Carlos, 2024. "Exploring home delivery service attributes: Sustainability versus delivery expectations during the COVID-19 pandemic," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    10. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    11. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).
    12. Kalakou, Sofia & Marques, Catarina & Prazeres, Duarte & Agouridas, Vassilis, 2023. "Citizens' attitudes towards technological innovations: The case of urban air mobility," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    13. Yavas, Volkan & Yavaş Tez, Özge, 2023. "Consumer intention over upcoming utopia: Urban air mobility," Journal of Air Transport Management, Elsevier, vol. 107(C).
    14. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    15. Straubinger, Anna & de Groot, Henri L.F. & Verhoef, Erik T., 2023. "E-commerce, delivery drones and their impact on cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    16. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    17. Stelian GRASU & Ruxandra Madalina POPP & Marius George POPA, 2023. "Energy Price Liberalization Consequences on Energy Production Market in the European Union," REVISTA DE MANAGEMENT COMPARAT INTERNATIONAL/REVIEW OF INTERNATIONAL COMPARATIVE MANAGEMENT, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 24(2), pages 251-260, May.
    18. Hu, Zhangchen & Chen, Heng & Lyons, Eric & Solak, Senay & Zink, Michael, 2024. "Towards sustainable UAV operations: Balancing economic optimization with environmental and social considerations in path planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    19. Pahwa, Anmol & Jaller, Miguel, 2023. "Assessing last-mile distribution resilience under demand disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    20. Tom Verstraten & Md Sazzad Hosen & Maitane Berecibar & Bram Vanderborght, 2023. "Selecting Suitable Battery Technologies for Untethered Robot," Energies, MDPI, vol. 16(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:145:y:2024:i:c:p:37-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.