IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v145y2024icp137-149.html
   My bibliography  Save this article

Modelling benefit-to-cost ratio for initial phase electrification using battery electric bus

Author

Listed:
  • Panta, Utsav
  • Gairola, Pranav
  • Nezamuddin, N.

Abstract

In light of growing global concern regarding environmental pollution, greenhouse gas emission and fast-depleting petroleum resources, electric buses are being considered as an integral part of future urban transportation system. However, substantial financial resources required for complete transition from conventional fuel-driven buses to electric buses means that this process will take place progressively. We have developed an optimization framework to assist in decision-making during the initial phase of transitioning to electric buses while working within financial constraints. Our approach focuses on a route-specific performance metric, the benefit-to-cost (B/C) ratio, which maximizes fuel savings and emissions reduction when transitioning to electric buses, all while respecting the limitations of available resources. The model identifies the set of bus routes to be electrified, along with the locations of electrified terminals. The proposed model was tested on the extensive public bus network of Delhi, India for two scenarios: compressed natural gas (CNG)-to-electric and diesel-to-electric bus transitions. Additionally, sensitivity analysis was conducted to evaluate how the available electrification budget and charging power affect the benefit-to-cost ratio and decisions related to route and terminal electrification. To fully realize the environmental benefits of electric buses, it is essential for the bus electrification policy to align with a shift from carbon-intensive energy sources to cleaner alternatives. Our study for Delhi suggests that a minimum of 30% of the electricity should come from clean energy sources to maximize the environmental benefits of bus electrification. This framework can thus serve as a useful tool to public transit agencies when planning the initial phases of the bus electrification.

Suggested Citation

  • Panta, Utsav & Gairola, Pranav & Nezamuddin, N., 2024. "Modelling benefit-to-cost ratio for initial phase electrification using battery electric bus," Transport Policy, Elsevier, vol. 145(C), pages 137-149.
  • Handle: RePEc:eee:trapol:v:145:y:2024:i:c:p:137-149
    DOI: 10.1016/j.tranpol.2023.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23002846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    2. Krelling, Christian & Badami, Madhav G., 2022. "Cost-effectiveness analysis of compressed natural gas implementation in the public bus transit fleet in Delhi, India," Transport Policy, Elsevier, vol. 115(C), pages 49-61.
    3. Arizcuren-Blasco, Javier & Martin-Garcia, Rodrigo & Ruiz-Rua, Aurora, 2023. "Is unsubsidised energy transition possible? Feasibility of replacing diesel buses with electric ones," Transport Policy, Elsevier, vol. 137(C), pages 67-89.
    4. Pucher, John & Korattyswaropam, Nisha & Mittal, Neha & Ittyerah, Neenu, 2005. "Urban transport crisis in India," Transport Policy, Elsevier, vol. 12(3), pages 185-198, May.
    5. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    6. Bi, Zicheng & Song, Lingjun & De Kleine, Robert & Mi, Chunting Chris & Keoleian, Gregory A., 2015. "Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system," Applied Energy, Elsevier, vol. 146(C), pages 11-19.
    7. Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    3. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    4. Hatem Abdelaty & Ahmed Foda & Moataz Mohamed, 2023. "The Robustness of Battery Electric Bus Transit Networks under Charging Infrastructure Disruptions," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    5. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    6. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    7. Cui, Shaohua & Gao, Kun & Yu, Bin & Ma, Zhenliang & Najafi, Arsalan, 2023. "Joint optimal vehicle and recharging scheduling for mixed bus fleets under limited chargers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    8. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    9. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Liu, Zhaocai & Wang, Qichao & Sigler, Devon & Kotz, Andrew & Kelly, Kenneth J. & Lunacek, Monte & Phillips, Caleb & Garikapati, Venu, 2023. "Data-driven simulation-based planning for electric airport shuttle systems: A real-world case study," Applied Energy, Elsevier, vol. 332(C).
    11. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    12. Bao, Zhaoyao & Li, Jiapei & Bai, Xuehan & Xie, Chi & Chen, Zhibin & Xu, Min & Shang, Wen-Long & Li, Hailong, 2023. "An optimal charging scheduling model and algorithm for electric buses," Applied Energy, Elsevier, vol. 332(C).
    13. Yiming Bie & Mingjie Hao & Mengzhu Guo, 2021. "Optimal Electric Bus Scheduling Based on the Combination of All-Stop and Short-Turning Strategies," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    14. Guschinsky, Nikolai & Kovalyov, Mikhail Y. & Pesch, Erwin & Rozin, Boris, 2023. "Cost minimizing decisions on equipment and charging schedule for electric buses in a single depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    15. Krzysztof KRAWIEC, 2021. "Vehicle Cycle Hierarchization Model To Determine The Order Of Battery Electric Bus Deployment In Public Transport," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 99-112, March.
    16. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    17. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    18. Wei Qin & Linhong Wang & Yuhan Liu & Cheng Xu, 2021. "Energy Consumption Estimation of the Electric Bus Based on Grey Wolf Optimization Algorithm and Support Vector Machine Regression," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    19. Xinkuo Xu & Liyan Han, 2020. "Operational Lifecycle Carbon Value of Bus Electrification in Macau," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    20. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:145:y:2024:i:c:p:137-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.