IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v182y2024ics1366554523003587.html
   My bibliography  Save this article

A relax-and-restrict matheuristic for supply chain network design with facility location and customer due date flexibility

Author

Listed:
  • Kidd, Martin P.
  • Darvish, Maryam
  • Coelho, Leandro C.
  • Gendron, Bernard

Abstract

In this paper, we study a supply chain network design problem that takes into account several real-world features. Focusing on the growing use of third-party warehouse services, the paper discusses the creation of a network that can adjust to the needs of businesses to enhance operational flexibility and resource utilization. Moreover, it addresses the challenge of delivery date flexibility where the conventional single-day delivery is replaced with a range of possible delivery dates. Considering these two types of flexibility, we formulate a supply chain network design problem that includes all production, inventory, location, and distribution decisions. We propose a solution approach called the relax-and-restrict matheuristic. This approach iteratively solves three versions of the model: two relaxed versions and a restricted one. Through a series of computational experiments, we highlight the efficiency of the proposed method. Furthermore, managerial insights are presented on the role of flexibility in supply chain network design and how it relates to economies of scale. The results demonstrate how synergistic effects between two types of flexibility improve logistics performance by achieving cost-effectiveness.

Suggested Citation

  • Kidd, Martin P. & Darvish, Maryam & Coelho, Leandro C. & Gendron, Bernard, 2024. "A relax-and-restrict matheuristic for supply chain network design with facility location and customer due date flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:transe:v:182:y:2024:i:c:s1366554523003587
    DOI: 10.1016/j.tre.2023.103370
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmidt, Carise E. & Silva, Arinei C.L. & Darvish, Maryam & Coelho, Leandro C., 2023. "Time-dependent fleet size and mix multi-depot vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 255(C).
    2. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    3. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    4. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    5. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    6. Nadjib Brahimi & Ali Cheaitou & Pierre Cariou & Dominique Feillet, 2021. "An exact algorithm for the single liner service design problem with speed optimisation," International Journal of Production Research, Taylor & Francis Journals, vol. 59(22), pages 6809-6832, November.
    7. Zhanwei Tian & Guoqing Zhang, 2021. "Multi-echelon fulfillment warehouse rent and production allocation for online direct selling," Annals of Operations Research, Springer, vol. 304(1), pages 427-451, September.
    8. Kaan Unnu & Jennifer Pazour, 2022. "Evaluating on-demand warehousing via dynamic facility location models," IISE Transactions, Taylor & Francis Journals, vol. 54(10), pages 988-1003, July.
    9. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric, 2021. "A time-expanded network reduction matheuristic for the logistics service network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    10. Gábor Nagy & Niaz A. Wassan & M. Grazia Speranza & Claudia Archetti, 2015. "The Vehicle Routing Problem with Divisible Deliveries and Pickups," Transportation Science, INFORMS, vol. 49(2), pages 271-294, May.
    11. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2017. "Lagrangian Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capacities," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 388-404, August.
    12. Jean-François Cordeau & Federico Pasin & Marius Solomon, 2006. "An integrated model for logistics network design," Annals of Operations Research, Springer, vol. 144(1), pages 59-82, April.
    13. Han, Jialin & Zhang, Jiaxiang & Zeng, Bing & Mao, Mingsong, 2021. "Optimizing dynamic facility location-allocation for agricultural machinery maintenance using Benders decomposition," Omega, Elsevier, vol. 105(C).
    14. Maryam Darvish & Homero Larrain & Leandro C. Coelho, 2016. "A dynamic multi-plant lot-sizing and distribution problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6707-6717, November.
    15. Darvish, Maryam & Archetti, Claudia & Coelho, Leandro C. & Speranza, M. Grazia, 2019. "Flexible two-echelon location routing problem," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1124-1136.
    16. Benjamin C. Shelbourne & Maria Battarra & Chris N. Potts, 2017. "The Vehicle Routing Problem with Release and Due Dates," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 705-723, November.
    17. Schmidt, Carise E. & Silva, Arinei C.L. & Darvish, Maryam & Coelho, Leandro C., 2019. "The time-dependent location-routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 293-315.
    18. Tong Wang & Beril L. Toktay, 2008. "Inventory Management with Advance Demand Information and Flexible Delivery," Management Science, INFORMS, vol. 54(4), pages 716-732, April.
    19. Darvish, Maryam & Coelho, Leandro C., 2018. "Sequential versus integrated optimization: Production, location, inventory control, and distribution," European Journal of Operational Research, Elsevier, vol. 268(1), pages 203-214.
    20. Van der Heide, G. & Buijs, P. & Roodbergen, K.J. & Vis, I.F.A., 2018. "Dynamic shipments of inventories in shared warehouse and transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 240-257.
    21. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tao & Xiao, Fan & Zhang, Canrong & Zhang, Defu & Liang, Zhe, 2019. "Regression and extrapolation guided optimization for production–distribution with ship–buy–exchange options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 15-37.
    2. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    3. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    4. Šárka Štádlerová & Sanjay Dominik Jena & Peter Schütz, 2023. "Using Lagrangian relaxation to locate hydrogen production facilities under uncertain demand: a case study from Norway," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    5. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.
    6. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    7. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    8. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    9. Güden, Hüseyin & Süral, Haldun, 2014. "Locating mobile facilities in railway construction management," Omega, Elsevier, vol. 45(C), pages 71-79.
    10. Mittal, Neha & Boile, Maria & Baveja, Alok & Theofanis, Sotiris, 2013. "Determining optimal inland-empty-container depot locations under stochastic demand," Research in Transportation Economics, Elsevier, vol. 42(1), pages 50-60.
    11. Mohsen Moghaddam & Shimon Y. Nof & Ehud Menipaz, 2016. "Design and administration of collaborative networked headquarters," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7074-7090, December.
    12. Gross, Wendelin & Butz, Christian, 2014. "Design of Sustainable Transportation Networks," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 18, volume 18, pages 137-160, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    13. Ramos Manoel João & Feiden Aldi & Sousa Fragoso Rui Manuel de, 2019. "A Multi-objective Approach for Supply Chain Network Design: Tilapia Pisciculture in Paraná State - Brazil," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 17(1), pages 1-14, May.
    14. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric, 2022. "Meta partial benders decomposition for the logistics service network design problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 473-489.
    15. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. Jakubovskis, Aldis, 2017. "Flexible production resources and capacity utilization rates: A robust optimization perspective," International Journal of Production Economics, Elsevier, vol. 189(C), pages 77-85.
    17. Youssef Boulaksil & M. Jaafar Belkora, 2017. "Distribution Strategies Toward Nanostores in Emerging Markets: The Valencia Case," Interfaces, INFORMS, vol. 47(6), pages 505-517, December.
    18. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    19. Walther, Grit & Schatka, Anne & Spengler, Thomas S., 2012. "Design of regional production networks for second generation synthetic bio-fuel – A case study in Northern Germany," European Journal of Operational Research, Elsevier, vol. 218(1), pages 280-292.
    20. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:182:y:2024:i:c:s1366554523003587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.