IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v180y2024ics0191261524000110.html
   My bibliography  Save this article

A data-driven optimization approach to improving maritime transport efficiency

Author

Listed:
  • Yan, Ran
  • Liu, Yan
  • Wang, Shuaian

Abstract

Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying ship risk, but the thresholds of the factors that determine a ship’s risk and classification in the SRP framework are subjective and can make the ship selection process less efficient. In this study we propose a data-driven bi-objective nonlinear programming model, referred to as the SRP+ model, to optimize the thresholds in the original SRP framework. To solve the model, we first linearize the nonlinear optimization model using the big-M method, and then develop an augmented epsilon-constraint method to transform the bi-objective model to a single-objective model and obtain all Pareto optimal solutions. We also conduct a case study using real PSC inspection records at the Hong Kong port to construct and validate the SRP+ model. The results suggest that the threshold of the total weighting points to classify a ship as high-risk ship should be slightly increased, the thresholds of ship age should be significantly increased, the threshold of historical deficiency number should be increased, while the threshold of historical ship detention times should be decreased. The proposed SRP+ model can benefit both conservative and open-minded port authority decision makers by identifying ships with more deficiencies and/or higher detention probability more efficiently. The model can also be applied to other risk management problems in transportation and supply chain management, in addition to the maritime transport domain.

Suggested Citation

  • Yan, Ran & Liu, Yan & Wang, Shuaian, 2024. "A data-driven optimization approach to improving maritime transport efficiency," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:transb:v:180:y:2024:i:c:s0191261524000110
    DOI: 10.1016/j.trb.2024.102887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524000110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    2. Agra, Agostinho & Rodrigues, Filipe, 2022. "Distributionally robust optimization for the berth allocation problem under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 1-24.
    3. Adler, Nicole & Brudner, Amir & Gallotti, Riccardo & Privitera, Filippo & Ramasco, José J., 2022. "Does big data help answer big questions? The case of airport catchment areas & competition," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 444-467.
    4. Samayita Guha & Subodha Kumar, 2018. "Emergence of Big Data Research in Operations Management, Information Systems, and Healthcare: Past Contributions and Future Roadmap," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1724-1735, September.
    5. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    6. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    7. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Janne Kettunen & Ahti Salo, 2017. "Estimation of Downside Risks in Project Portfolio Selection," Production and Operations Management, Production and Operations Management Society, vol. 26(10), pages 1839-1853, October.
    9. Panos Markou & Daniel Corsten, 2021. "Financial and Operational Risk Management: Inventory Effects in the Gold Mining Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4635-4655, December.
    10. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    11. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    12. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2023. "A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 145-170.
    13. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    14. Saurabh Bansal & Genaro J. Gutierrez & John R. Keiser, 2017. "Using Experts’ Noisy Quantile Judgments to Quantify Risks: Theory and Application to Agribusiness," Operations Research, INFORMS, vol. 65(5), pages 1115-1130, October.
    15. Özgecan S. Ulusçu & Birnur Özbaş & Tayfur Altıok & İlhan Or, 2009. "Risk Analysis of the Vessel Traffic in the Strait of Istanbul," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1454-1472, October.
    16. Christiaan Heij & Sabine Knapp, 2019. "Shipping inspections, detentions, and incidents: an empirical analysis of risk dimensions," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(7), pages 866-883, October.
    17. Yan, Ran & Wang, Shuaian & Cao, Jiannong & Sun, Defeng, 2021. "Shipping Domain Knowledge Informed Prediction and Optimization in Port State Control," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 52-78.
    18. Qi Feng & J. George Shanthikumar, 2018. "How Research in Production and Operations Management May Evolve in the Era of Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1670-1684, September.
    19. Martin K. Starr & Luk N. Van Wassenhove, 2014. "Introduction to the Special Issue on Humanitarian Operations and Crisis Management," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 925-937, June.
    20. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    21. Tsan‐Ming Choi & Stein W. Wallace & Yulan Wang, 2018. "Big Data Analytics in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1868-1883, October.
    22. Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
    23. Ran Yan & Dan Zhuge & Shuaian Wang, 2021. "Development of Two Highly-Efficient and Innovative Inspection Schemes for PSC Inspection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 38(03), pages 1-23, June.
    24. Mrabti, Nassim & Hamani, Nadia & Boulaksil, Youssef & Amine Gargouri, Mohamed & Delahoche, Laurent, 2022. "A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    2. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    3. Yan, Ran & Wang, Shuaian & Cao, Jiannong & Sun, Defeng, 2021. "Shipping Domain Knowledge Informed Prediction and Optimization in Port State Control," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 52-78.
    4. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    5. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    6. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "A Decision-Focused Learning Framework for Vessel Selection Problem," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    7. Xuecheng Tian & Shuaian Wang, 2022. "Cost-Sensitive Laplacian Logistic Regression for Ship Detention Prediction," Mathematics, MDPI, vol. 11(1), pages 1-15, December.
    8. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    9. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
    11. Subodha Kumar & Rakesh R. Mallipeddi, 2022. "Impact of cybersecurity on operations and supply chain management: Emerging trends and future research directions," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4488-4500, December.
    12. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Wang, Yuhong & Zhang, Fan & Yang, Zhisen & Yang, Zaili, 2021. "Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    16. Robert P. Rooderkerk & Nicole DeHoratius & Andrés Musalem, 2022. "The past, present, and future of retail analytics: Insights from a survey of academic research and interviews with practitioners," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3727-3748, October.
    17. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    18. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Liu, Weihua & George Shanthikumar, J. & Tae-Woo Lee, Paul & Li, Xiang & Zhou, Li, 2021. "Special issue editorial: Smart supply chains and intelligent logistics services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    20. Maximilian Klöckner & Christoph G. Schmidt & Stephan M. Wagner, 2022. "When Blockchain Creates Shareholder Value: Empirical Evidence from International Firm Announcements," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 46-64, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:180:y:2024:i:c:s0191261524000110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.