IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v177y2023ics0965856423002604.html
   My bibliography  Save this article

Capacity Utilization of U.S. Airports: A Data Envelopment Analysis

Author

Listed:
  • Karanki, Fecri
  • Bilotkach, Volodymyr

Abstract

Air travel demand is forecasted to grow substantially following a long standstill period. However, it is unclear whether the air transportation industry is adequately equipped to handle this surge. In particular, concerns about the airport capacity have resurfaced. While previous studies have extensively examined airport capacity from an engineering perspective, an economic capacity assessment could shed further light on this issue. We examine the capacity structure of 59 large and medium hub airports in the U.S. in the years from 2015 to 2019 with a linear programming model that includes a modified DEA based on Johansen (1968)’s capacity definition and a standard DEA. In addition, a probit model is employed to investigate if external factors, such as airport size, legacy airline hub status, multi-airport system, population, and per capita income in metropolitan statistical areas account for excess capacity. The major findings in the first stage of analysis are: (i) Based on 2019 estimates, 76% of sample airports would not experience a capacity problem in the next seven years after air traffic returns to the pre-pandemic levels if the variable inputs like the number of employees and operating expenditures are utilized; (ii) the average efficiency of U.S. airports in the sample period is 0.79, indicating that the airports could increase their output by 21%; (iii) the variable inputs are underutilized, suggesting that there is a shortage of these inputs, and (iv) capacity utilization rates of large hub airports are 9% higher than the medium hubs. The second stage of our analysis provides deeper insights into the findings from the first stage, revealing that larger airports and airports in a multi-airport system are less likely to experience excess capacity. Besides, the results identify population as a significant factor, with a larger population leading to a lower probability of excess capacity. Overall, this study suggests that the US airport industry could benefit from improved efficiency and better utilization of variable inputs to meet the expected surge in air traffic demand.

Suggested Citation

  • Karanki, Fecri & Bilotkach, Volodymyr, 2023. "Capacity Utilization of U.S. Airports: A Data Envelopment Analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:transa:v:177:y:2023:i:c:s0965856423002604
    DOI: 10.1016/j.tra.2023.103840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423002604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coelli, Tim & Grifell-Tatje, Emili & Perelman, Sergio, 2002. "Capacity utilisation and profitability: A decomposition of short-run profit efficiency," International Journal of Production Economics, Elsevier, vol. 79(3), pages 261-278, October.
    2. Bazargan, Massoud & Vasigh, Bijan, 2003. "Size versus efficiency: a case study of US commercial airports," Journal of Air Transport Management, Elsevier, vol. 9(3), pages 187-193.
    3. Scotti, Davide & Malighetti, Paolo & Martini, Gianmaria & Volta, Nicola, 2012. "The impact of airport competition on technical efficiency: A stochastic frontier analysis applied to Italian airport," Journal of Air Transport Management, Elsevier, vol. 22(C), pages 9-15.
    4. Sahoo, Biresh K. & Tone, Kaoru, 2009. "Decomposing capacity utilization in data envelopment analysis: An application to banks in India," European Journal of Operational Research, Elsevier, vol. 195(2), pages 575-594, June.
    5. Gillen, David & Lall, Ashish, 1997. "Developing measures of airport productivity and performance: an application of data envelopment analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 33(4), pages 261-273, December.
    6. D’Alfonso, Tiziana & Daraio, Cinzia & Nastasi, Alberto, 2015. "Competition and efficiency in the Italian airport system: new insights from a conditional nonparametric frontier analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 20-38.
    7. Gelhausen, Marc C. & Berster, Peter & Wilken, Dieter, 2013. "Do airport capacity constraints have a serious impact on the future development of air traffic?," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 3-13.
    8. Evans, Antony & Schäfer, Andreas, 2011. "The impact of airport capacity constraints on future growth in the US air transportation system," Journal of Air Transport Management, Elsevier, vol. 17(5), pages 288-295.
    9. Hamzawi, Salah G., 1992. "Lack of airport capacity: Exploration of alternative solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(1), pages 47-58, January.
    10. Patrick McCarthy, 2014. "US Airport Costs and Production Technology A Translog Cost Function Analysis," Journal of Transport Economics and Policy, University of Bath, vol. 48(3), pages 427-447, September.
    11. Britto, Rodrigo & Dresner, Martin & Voltes, Augusto, 2012. "The impact of flight delays on passenger demand and societal welfare," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 460-469.
    12. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    13. Georges Assaf, A. & Gillen, David, 2012. "Measuring the joint impact of governance form and economic regulation on airport efficiency," European Journal of Operational Research, Elsevier, vol. 220(1), pages 187-198.
    14. Xiao, Yibin & Fu, Xiaowen & Zhang, Anming, 2013. "Demand uncertainty and airport capacity choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 91-104.
    15. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Zhang, Anming & Zhang, Yimin, 2010. "Airport capacity and congestion pricing with both aeronautical and commercial operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(3), pages 404-413, March.
    18. Oum, Tae H. & Yan, Jia & Yu, Chunyan, 2008. "Ownership forms matter for airport efficiency: A stochastic frontier investigation of worldwide airports," Journal of Urban Economics, Elsevier, vol. 64(2), pages 422-435, September.
    19. Hu, Rong & Feng, Huilin & Witlox, Frank & Zhang, Junfeng & Connor, Kevin O., 2022. "Airport capacity constraints and air traffic demand in China," Journal of Air Transport Management, Elsevier, vol. 103(C).
    20. Everett B. Peterson & Kevin Neels & Nathan Barczi & Thea Graham, 2013. "The Economic Cost of Airline Flight Delay," Journal of Transport Economics and Policy, University of Bath, vol. 47(1), pages 107-121, January.
    21. Fernandes, Elton & Pacheco, R. R., 2002. "Efficient use of airport capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 225-238, March.
    22. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    23. Yu, Ming-Miin & Chang, Yu-Chun & Chen, Li-Hsueh, 2016. "Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 186-198.
    24. Oum, Tae Hoon & Zhang, Yimin, 1990. "Airport pricing : Congestion tolls, lumpy investment, and cost recovery," Journal of Public Economics, Elsevier, vol. 43(3), pages 353-374, December.
    25. Fare, Rolf & Grosskopf, Shawna & Kokkelenberg, Edward C, 1989. "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 655-666, August.
    26. Karanki, Fecri & Lim, Siew Hoon, 2020. "The effects of use agreements on airport efficiency," Journal of Air Transport Management, Elsevier, vol. 84(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karanki, Fecri & Lim, Siew Hoon, 2020. "The effects of use agreements on airport efficiency," Journal of Air Transport Management, Elsevier, vol. 84(C).
    2. Zou, Bo & Kafle, Nabin & Chang, Young-Tae & Park, Kevin, 2015. "US airport financial reform and its implications for airport efficiency: An exploratory investigation," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 66-78.
    3. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    4. Merkert, Rico & Assaf, A. George, 2015. "Using DEA models to jointly estimate service quality perception and profitability – Evidence from international airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 42-50.
    5. Fernández, Xose Luis & Gundelfinger, Javier & Coto-Millán, Pablo, 2022. "The impact of logistics and intermodality on airport efficiency," Transport Policy, Elsevier, vol. 124(C), pages 233-239.
    6. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2021. "Does high-speed rail development affect airport productivity? Evidence from China and Japan," Transport Policy, Elsevier, vol. 110(C), pages 1-15.
    7. Adler, Nicole & Ülkü, Tolga & Yazhemsky, Ekaterina, 2013. "Small regional airport sustainability: Lessons from benchmarking," Journal of Air Transport Management, Elsevier, vol. 33(C), pages 22-31.
    8. Ahn, Young-Hyo & Min, Hokey, 2014. "Evaluating the multi-period operating efficiency of international airports using data envelopment analysis and the Malmquist productivity index," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 12-22.
    9. Gutiérrez, Ester & Lozano, Sebastián, 2016. "Efficiency assessment and output maximization possibilities of European small and medium sized airports," Research in Transportation Economics, Elsevier, vol. 56(C), pages 3-14.
    10. Tae Hoon Oum & Katsuhiro Yamaguchi & Yuichiro Yoshida, 2011. "Efficiency Measurement Theory and its Application to Airport Benchmarking," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 13, Edward Elgar Publishing.
    11. Adler, Nicole & Liebert, Vanessa, 2014. "Joint impact of competition, ownership form and economic regulation on airport performance and pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 92-109.
    12. Lim, Siew Hoon & Karanki, Fecri, 2020. "Airport use agreement types and input and output slacks: The case of U.S. airports," Research in Transportation Economics, Elsevier, vol. 84(C).
    13. Kan Tsui, Wai Hong & Balli, Hatice Ozer & Gilbey, Andrew & Gow, Hamish, 2014. "Operational efficiency of Asia–Pacific airports," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 16-24.
    14. Malighetti, G & Martini, G & Paleari, S & Redondi, R, 2009. "The Impacts of Airport Centrality in the EU Network and Inter- Airport Competition on Airport Efficiency," MPRA Paper 17673, University Library of Munich, Germany.
    15. Zhang, Baocheng & Wu, Hao & Yang, Xinsheng & Zhai, Wenpeng & Xia, Qingjun & Li, Yafei, 2014. "An estimation of returns to scale of airport airsides under multiple optimal solutions in DEA," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 149-156.
    16. Chaouk, Mohammed & Pagliari, Dr Romano & Moxon, Richard, 2020. "The impact of national macro-environment exogenous variables on airport efficiency," Journal of Air Transport Management, Elsevier, vol. 82(C).
    17. Riccardo Gianluigi Serio & Maria Michela Dickson & Diego Giuliani & Giuseppe Espa, 2022. "Toward environmental sustainability: an empirical study on airports efficiency," Papers 2210.02736, arXiv.org, revised Mar 2024.
    18. Güner, Samet & İbrahim Cebeci, Halil, 2021. "Multi-period efficiency analysis of major European and Asian airports under fixed proportion technologies," Transport Policy, Elsevier, vol. 107(C), pages 24-42.
    19. Weekx, Simon & Buyle, Sven, 2023. "The effect of airline dominance on airport performance: Empirical evidence from medium-sized European airports," Journal of Air Transport Management, Elsevier, vol. 107(C).
    20. Lin, L.C. & Hong, C.H., 2006. "Operational performance evaluation of international major airports: An application of data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 342-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:177:y:2023:i:c:s0965856423002604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.