IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v176y2023ics0965856423002173.html
   My bibliography  Save this article

Dynamic consumer preferences for electric vehicles in China: A longitudinal approach

Author

Listed:
  • Qian, Lixian
  • Huang, Youlin
  • Tyfield, David
  • Soopramanien, Didier

Abstract

Sustainable innovations such as electric vehicles (EVs) are important means to address global environmental and energy sustainability challenges – one of the key agendas of current strategic government policy. Although EVs have gradually penetrated the market, existing research on consumer preferences for EVs is mostly based on cross-sectional analysis, without sufficient attention devoted to consumer preference changes over time. To fill this gap, this study proposes a longitudinal approach to extend the EV adoption research. Specifically, this study illustrates the value of studying consumer preferences for EVs from a dynamic perspective and focuses on changes in preference heterogeneity across different marketA segments over time. This study conducts three waves of stated preference experiments from 2017 to 2019 from a same group of respondents. The mixed logit analysis shows that, over these three years, Chinese consumers have become less sensitive to running cost but have been consistently valuing home charging capability and prioritized licensing for EVs. Furthermore, the perceived importance of the density of fast charging stations and overall preferences for EVs fluctuated over this period. Further analysis on preference heterogeneity finds that consumers in small cities were developing stronger preferences for battery EVs in 2018 and 2019 than in the base year of 2017, while those living in midsized and big cities did not present the preference change for battery EVs over the same period. Our study provides important managerial and policy implications for the diffusion of EVs, in particular with respect to specific insights obtained by taking a dynamic perspective to study consumer preferences for EVs.

Suggested Citation

  • Qian, Lixian & Huang, Youlin & Tyfield, David & Soopramanien, Didier, 2023. "Dynamic consumer preferences for electric vehicles in China: A longitudinal approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:transa:v:176:y:2023:i:c:s0965856423002173
    DOI: 10.1016/j.tra.2023.103797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423002173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Huiming Gong & Michael Wang & Hewu Wang, 2013. "New energy vehicles in China: policies, demonstration, and progress," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 207-228, February.
    3. Yang, Shu & Cheng, Peng & Li, Jun & Wang, Shanyong, 2019. "Which group should policies target? Effects of incentive policies and product cognitions for electric vehicle adoption among Chinese consumers," Energy Policy, Elsevier, vol. 135(C).
    4. Prateek Bansal & Rajeev Ranjan Kumar & Alok Raj & Subodh Dubey & Daniel J. Graham, 2021. "Willingness to Pay and Attitudinal Preferences of Indian Consumers for Electric Vehicles," Papers 2101.08008, arXiv.org, revised May 2021.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    6. Bas, Javier & Cirillo, Cinzia & Cherchi, Elisabetta, 2021. "Classification of potential electric vehicle purchasers: A machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    7. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    8. Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
    9. Huang, Youlin & Qian, Lixian & Tyfield, David & Soopramanien, Didier, 2021. "On the heterogeneity in consumer preferences for electric vehicles across generations and cities in China," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Wang, Ning & Tang, Linhao & Pan, Huizhong, 2018. "Analysis of public acceptance of electric vehicles: An empirical study in Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 284-291.
    11. Plötz, Patrick & Schneider, Uta & Globisch, Joachim & Dütschke, Elisabeth, 2014. "Who will buy electric vehicles? Identifying early adopters in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 96-109.
    12. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2014. "Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 71-85.
    13. Gurtner, Sebastian & Soyez, Katja, 2016. "How to catch the generation Y: Identifying consumers of ecological innovations among youngsters," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 101-107.
    14. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    15. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    16. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    17. Yang, Xiaofang & Jin, Wen & Jiang, Hai & Xie, Qianyan & Shen, Wei & Han, Weijian, 2017. "Car ownership policies in China: Preferences of residents and influence on the choice of electric cars," Transport Policy, Elsevier, vol. 58(C), pages 62-71.
    18. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    19. Cherchi, Elisabetta, 2017. "A stated choice experiment to measure the effect of informational and normative conformity in the preference for electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 88-104.
    20. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    21. Bas, Javier & Zofío, José L. & Cirillo, Cinzia & Chen, Hao & Rakha, Hesham A., 2022. "Policy and industry implications of the potential market penetration of electric vehicles with eco-cooperative adaptive cruise control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 242-256.
    22. David L. McCollum & Charlie Wilson & Michela Bevione & Samuel Carrara & Oreane Y. Edelenbosch & Johannes Emmerling & Céline Guivarch & Panagiotis Karkatsoulis & Ilkka Keppo & Volker Krey & Zhenhong Li, 2018. "Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles," Nature Energy, Nature, vol. 3(8), pages 664-673, August.
    23. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    24. Franke, Thomas & Krems, Josef F., 2013. "Interacting with limited mobility resources: Psychological range levels in electric vehicle use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 109-122.
    25. Hensher,David A. & Rose,John M. & Greene,William H., 2015. "Applied Choice Analysis," Cambridge Books, Cambridge University Press, number 9781107465923, November.
    26. Bohnsack, René, 2018. "Local niches and firm responses in sustainability transitions: The case of low-emission vehicles in China," Technovation, Elsevier, vol. 70, pages 20-32.
    27. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    28. Silvia, Chris & Krause, Rachel M., 2016. "Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model," Energy Policy, Elsevier, vol. 96(C), pages 105-118.
    29. Ou, Shiqi & Lin, Zhenhong & Qi, Liang & Li, Jie & He, Xin & Przesmitzki, Steven, 2018. "The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China," Energy Policy, Elsevier, vol. 121(C), pages 597-610.
    30. Junquera, Beatriz & Moreno, Blanca & Álvarez, Roberto, 2016. "Analyzing consumer attitudes towards electric vehicle purchasing intentions in Spain: Technological limitations and vehicle confidence," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 6-14.
    31. Shanjun Li, 2018. "Better Lucky Than Rich? Welfare Analysis of Automobile Licence Allocations in Beijing and Shanghai," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(4), pages 2389-2428.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Youlin & Qian, Lixian & Tyfield, David & Soopramanien, Didier, 2021. "On the heterogeneity in consumer preferences for electric vehicles across generations and cities in China," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    3. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    4. Huang, Youlin & Qian, Lixian & Soopramanien, Didier & Tyfield, David, 2021. "Buy, lease, or share? Consumer preferences for innovative business models in the market for electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    5. Hackbarth, André & Madlener, Reinhard, 2018. "Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany," FCN Working Papers 17/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2019.
    6. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    7. Meilinda Fitriani Nur Maghfiroh & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2021. "Current Readiness Status of Electric Vehicles in Indonesia: Multistakeholder Perceptions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    8. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    9. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    10. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    11. Ye Yang & Zhongfu Tan, 2019. "Investigating the Influence of Consumer Behavior and Governmental Policy on the Diffusion of Electric Vehicles in Beijing, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    12. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    13. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    14. Zulfiqar Ali Lashari & Joonho Ko & Seunghyun Jung & Sungtaek Choi, 2022. "Choices of Potential Car Buyers Regarding Alternative Fuel Vehicles in South Korea: A Discrete Choice Modeling Approach," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    15. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    16. Ma, Shao-Chao & Xu, Jin-Hua & Fan, Ying, 2019. "Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China," Energy Economics, Elsevier, vol. 81(C), pages 197-215.
    17. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    18. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    19. Tchetchik, Anat & Zvi, Liat I. & Kaplan, Sigal & Blass, Vered, 2020. "The joint effects of driving hedonism and trialability on the choice between internal combustion engine, hybrid, and electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    20. Bera, Reema & Maitra, Bhargab, 2021. "Assessing consumer preferences for Plug-in Hybrid Electric Vehicle (PHEV): An Indian perspective," Research in Transportation Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:176:y:2023:i:c:s0965856423002173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.