IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v90y2021ics0739885921000792.html
   My bibliography  Save this article

America’s fleet evolution in an automated future

Author

Listed:
  • Quarles, Neil
  • Kockelman, Kara M.
  • Lee, Jooyong

Abstract

Cost reductions and technological advancements are priming autonomous, electric, and shared vehicles for rapid growth, which may improve safety and mobility, but may also increase vehicle-miles traveled (VMT). This study seeks to improve upon existing fleet evolution work, by simulating the adoption of autonomous, electric, and shared vehicles in a single fleet evolution simulation, calibrated with results of a recent survey of Americans. Statistical models are used in the household-level microsimulation to model decisions regarding vehicle transactions, travel behavior, and land use decisions.

Suggested Citation

  • Quarles, Neil & Kockelman, Kara M. & Lee, Jooyong, 2021. "America’s fleet evolution in an automated future," Research in Transportation Economics, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:retrec:v:90:y:2021:i:c:s0739885921000792
    DOI: 10.1016/j.retrec.2021.101107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885921000792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2021.101107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Musti, Sashank & Kockelman, Kara M., 2011. "Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 707-720, October.
    2. Kaltenhäuser, Bernd & Werdich, Karl & Dandl, Florian & Bogenberger, Klaus, 2020. "Market development of autonomous driving in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 882-910.
    3. Noori, Mehdi & Gardner, Stephanie & Tatari, Omer, 2015. "Electric vehicle cost, emissions, and water footprint in the United States: Development of a regional optimization model," Energy, Elsevier, vol. 89(C), pages 610-625.
    4. Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.
    5. Ye Feng & Don Fullerton & Li Gan, 2013. "Vehicle choices, miles driven, and pollution policies," Journal of Regulatory Economics, Springer, vol. 44(1), pages 4-29, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2022. "Dynamic ride-sharing impacts of greater trip demand and aggregation at stops in shared autonomous vehicle systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 114-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    2. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    3. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    4. Lawrence Goulder, 2007. "Distributional and Efficiency Impacts of Increased U.S. Gasoline Taxes," Discussion Papers 07-009, Stanford Institute for Economic Policy Research.
    5. Li, Yu & Zheng, Ji & Li, Zehong & Yuan, Liang & Yang, Yang & Li, Fujia, 2017. "Re-estimating CO2 emission factors for gasoline passenger cars adding driving behaviour characteristics——A case study of Beijing," Energy Policy, Elsevier, vol. 102(C), pages 353-361.
    6. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    7. Pauline Givord, 2011. "Essay on four issues in public policy evaluation [Essai sur quatre problèmes d’évaluation de politiques publiques]," SciencePo Working papers Main tel-04049492, HAL.
    8. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    9. Artur Meynkhard, 2019. "Energy Efficient Development Model for Regions of the Russian Federation: Evidence of Crypto Mining," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 16-21.
    10. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Jaržemskis Andrius & Jaržemskienė Ilona, 2022. "European Green Deal Implications on Country Level Energy Consumption," Folia Oeconomica Stetinensia, Sciendo, vol. 22(2), pages 97-122, December.
    12. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    13. Antonio M. Bento & Lawrence H. Goulder & Emeric Henry & Mark R. Jacobsen & Roger H. von Haefen, 2005. "Distributional and Efficiency Impacts of Gasoline Taxes: An Econometrically Based Multi-market Study," American Economic Review, American Economic Association, vol. 95(2), pages 282-287, May.
    14. Erika Spissu & Abdul Pinjari & Ram Pendyala & Chandra Bhat, 2009. "A copula-based joint multinomial discrete–continuous model of vehicle type choice and miles of travel," Transportation, Springer, vol. 36(4), pages 403-422, July.
    15. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    16. Cantos-Sánchez, Pedro & Gutiérrez-i-Puigarnau, Eva & Mulalic, Ismir, 2018. "The impact of scrappage programmes on the demand for new vehicles: Evidence from Spain," Research in Transportation Economics, Elsevier, vol. 70(C), pages 83-96.
    17. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    18. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    19. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
    20. Jose Esteves & Daniel Alonso-Martínez & Guillermo de Haro, 2021. "Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics," Sustainability, MDPI, vol. 13(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:90:y:2021:i:c:s0739885921000792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.