IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v74y2017icp1210-1239.html
   My bibliography  Save this article

Modelling and control of hybrid electric vehicles (A comprehensive review)

Author

Listed:
  • Enang, Wisdom
  • Bannister, Chris

Abstract

The gradual decline in global oil reserves and presence of ever so stringent emissions rules around the world, have created an urgent need for the production of automobiles with improved fuel economy. HEVs (hybrid electric vehicles) have proved a viable option to guaranteeing improved fuel economy and reduced emissions. The fuel consumption benefits which can be realised when utilising HEV architecture are dependent on how much braking energy is regenerated, and how well the regenerated energy is utilised. The challenge in developing an HEV control strategy lies in the satisfaction of often conflicting control constraints involving fuel consumption, emissions and driveability, without over-depleting the battery state of charge at the end of the defined driving cycle.

Suggested Citation

  • Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.
  • Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:1210-1239
    DOI: 10.1016/j.rser.2017.01.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    3. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Miller, Richard & Thompson, Erica, 2012. "Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates," Energy, Elsevier, vol. 37(1), pages 709-724.
    4. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Brandt, Adam & Miller, Richard, 2010. "Global oil depletion: A review of the evidence," Energy Policy, Elsevier, vol. 38(9), pages 5290-5295, September.
    5. Pérez, Laura V. & Bossio, Guillermo R. & Moitre, Diego & García, Guillermo O., 2006. "Optimization of power management in an hybrid electric vehicle using dynamic programming," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(1), pages 244-254.
    6. Pérez, Laura V. & Pilotta, Elvio A., 2009. "Optimal power split in a hybrid electric vehicle using direct transcription of an optimal control problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(6), pages 1959-1970.
    7. Plotkin, Steven E., 2009. "Examining fuel economy and carbon standards for light vehicles," Energy Policy, Elsevier, vol. 37(10), pages 3843-3853, October.
    8. Sorrell, Steve & Miller, Richard & Bentley, Roger & Speirs, Jamie, 2010. "Oil futures: A comparison of global supply forecasts," Energy Policy, Elsevier, vol. 38(9), pages 4990-5003, September.
    9. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    2. Harvey, L.D.D., 2013. "Global climate-oriented transportation scenarios," Energy Policy, Elsevier, vol. 54(C), pages 87-103.
    3. Ali Mirchi & Saeed Hadian & Kaveh Madani & Omid M. Rouhani & Azadeh M. Rouhani, 2012. "World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security," Energies, MDPI, vol. 5(8), pages 1-26, July.
    4. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    5. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    6. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    7. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    8. Warrilow, David, 2015. "A bumpy road to the top: Statistically defining a peak in oil production," Energy Policy, Elsevier, vol. 82(C), pages 81-84.
    9. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    10. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    11. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    12. Fantazzini, Dean & Höök, Mikael & Angelantoni, André, 2011. "Global oil risks in the early 21st century," Energy Policy, Elsevier, vol. 39(12), pages 7865-7873.
    13. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    14. Dimatulac, Terence & Maoh, Hanna, 2017. "The spatial distribution of hybrid electric vehicles in a sprawled mid-size Canadian city: Evidence from Windsor, Canada," Journal of Transport Geography, Elsevier, vol. 60(C), pages 59-67.
    15. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    16. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    17. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    18. Matthews, Lindsay & Lynes, Jennifer & Riemer, Manuel & Del Matto, Tania & Cloet, Nicholas, 2017. "Do we have a car for you? Encouraging the uptake of electric vehicles at point of sale," Energy Policy, Elsevier, vol. 100(C), pages 79-88.
    19. Hardman, Scott & Tal, Gil, 2021. "Discontinuance Among California’s Electric Vehicle Buyers: Why are Some Consumers Abandoning Electric Vehicles?," Institute of Transportation Studies, Working Paper Series qt11n6f4hs, Institute of Transportation Studies, UC Davis.
    20. Cecere, Grazia & Corrocher, Nicoletta & Guerzoni, Marco, 2018. "Price or performance? A probabilistic choice analysis of the intention to buy electric vehicles in European countries," Energy Policy, Elsevier, vol. 118(C), pages 19-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:1210-1239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.