IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i9p4586-4610.html
   My bibliography  Save this article

A review on global fuel economy standards, labels and technologies in the transportation sector

Author

Listed:
  • Atabani, A.E.
  • Badruddin, Irfan Anjum
  • Mekhilef, S.
  • Silitonga, A.S.

Abstract

Globally, the transportation sector is the second largest energy consuming sector after the industrial sector and accounts for 30% of the world's total delivered energy. In 2008 the transportation sector accounted for about 22% of total world CO2 emissions. It is believed that this sector is currently responsible for nearly 60% of world oil demand. Within this sector, road vehicles dominate oil consumption and represents 81% of total transportation energy demand. The purpose of this paper is to highlight the possible opportunities to improve fuel economy and thus reduce global oil consumption and greenhouse gases. There are three measures that have been reviewed; passenger vehicle fuel economy and greenhouse gas emission standards, fuel economy labels and improvement in vehicle fuel efficiency by advanced technologies.

Suggested Citation

  • Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:9:p:4586-4610
    DOI: 10.1016/j.rser.2011.07.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111003376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.07.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheah, Lynette & Heywood, John, 2011. "Meeting U.S. passenger vehicle fuel economy standards in 2016 and beyond," Energy Policy, Elsevier, vol. 39(1), pages 454-466, January.
    2. Plotkin, Steven E., 2001. "European and Japanese fuel economy initiatives: what they are, their prospects for success, their usefulness as a guide for US action," Energy Policy, Elsevier, vol. 29(13), pages 1073-1084, November.
    3. Low, Nicholas & Astle, Rachel, 2009. "Path dependence in urban transport: An institutional analysis of urban passenger transport in Melbourne, Australia, 1956-2006," Transport Policy, Elsevier, vol. 16(2), pages 47-58, March.
    4. Bastin, Cristina & Szklo, Alexandre & Rosa, Luiz Pinguelli, 2010. "Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet," Energy Policy, Elsevier, vol. 38(7), pages 3586-3597, July.
    5. Wagner, David Vance & An, Feng & Wang, Cheng, 2009. "Structure and impacts of fuel economy standards for passenger cars in China," Energy Policy, Elsevier, vol. 37(10), pages 3803-3811, October.
    6. Zhang, Shuwei & Jiang, Kejun & Liu, Deshun, 2007. "Passenger transport modal split based on budgets and implication for energy consumption: Approach and application in China," Energy Policy, Elsevier, vol. 35(9), pages 4434-4443, September.
    7. Bezdek, Roger H. & Wendling, Robert M., 2005. "Potential long-term impacts of changes in US vehicle fuel efficiency standards," Energy Policy, Elsevier, vol. 33(3), pages 407-419, February.
    8. Wills, William & La Rovere, Emilio Lèbre, 2010. "Light vehicle energy efficiency programs and their impact on Brazilian CO2 emissions," Energy Policy, Elsevier, vol. 38(11), pages 6453-6462, November.
    9. Wang, Zhao & Jin, Yuefu & Wang, Michael & Wei, Wu, 2010. "New fuel consumption standards for Chinese passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chinese passenger vehicle fleet," Energy Policy, Elsevier, vol. 38(9), pages 5242-5250, September.
    10. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    11. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    12. Plotkin, Steven E., 2009. "Examining fuel economy and carbon standards for light vehicles," Energy Policy, Elsevier, vol. 37(10), pages 3843-3853, October.
    13. Mahlia, T.M.I. & Saidur, R. & Memon, L.A. & Zulkifli, N.W.M. & Masjuki, H.H., 2010. "A review on fuel economy standard for motor vehicles with the implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3092-3099, December.
    14. Oliver, Hongyan H. & Gallagher, Kelly Sims & Tian, Donglian & Zhang, Jinhua, 2009. "China's fuel economy standards for passenger vehicles: Rationale, policy process, and impacts," Energy Policy, Elsevier, vol. 37(11), pages 4720-4729, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duc Luong, Nguyen, 2015. "A critical review on Energy Efficiency and Conservation policies and programs in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 623-634.
    2. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I., 2012. "Review on fuel economy standard and label for vehicle in selected ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1683-1695.
    3. Augustus De Melo, Conrado & De Martino Jannuzzi, Gilberto & De Mello Santana, Paulo Henrique, 2018. "Why should Brazil to implement mandatory fuel economy standards for the light vehicle fleet?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1166-1174.
    4. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Sebastián Naranjo-Silva & Kenny Escobar-Segovia, 2020. "Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
    5. Sheinbaum-Pardo, Claudia & Chávez-Baeza, Carlos, 2011. "Fuel economy of new passenger cars in Mexico: Trends from 1988 to 2008 and prospects," Energy Policy, Elsevier, vol. 39(12), pages 8153-8162.
    6. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    7. Lo, Kevin, 2014. "A critical review of China's rapidly developing renewable energy and energy efficiency policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 508-516.
    8. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    9. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    10. Huo, Hong & He, Kebin & Wang, Michael & Yao, Zhiliang, 2012. "Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles," Energy Policy, Elsevier, vol. 43(C), pages 30-36.
    11. Ben Dror, Maya & Qin, Lanzhi & An, Feng, 2019. "The gap between certified and real-world passenger vehicle fuel consumption in China measured using a mobile phone application data," Energy Policy, Elsevier, vol. 128(C), pages 8-16.
    12. Huo, Hong & Yao, Zhiliang & He, Kebin & Yu, Xin, 2011. "Fuel consumption rates of passenger cars in China: Labels versus real-world," Energy Policy, Elsevier, vol. 39(11), pages 7130-7135.
    13. Wu, Jingwen & Posen, I. Daniel & MacLean, Heather L., 2021. "Trade-offs between vehicle fuel economy and performance: Evidence from heterogeneous firms in China," Energy Policy, Elsevier, vol. 156(C).
    14. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    15. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    16. Wu, Ye & Yang, Zhengdong & Lin, Bohong & Liu, Huan & Wang, Renjie & Zhou, Boya & Hao, Jiming, 2012. "Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China," Energy Policy, Elsevier, vol. 48(C), pages 537-550.
    17. Wu, Libo & Huo, Hong, 2014. "Energy efficiency achievements in China׳s industrial and transport sectors: How do they rate?," Energy Policy, Elsevier, vol. 73(C), pages 38-46.
    18. Malik, Leeza & Tiwari, Geetam, 2017. "Assessment of interstate freight vehicle characteristics and impact of future emission and fuel economy standards on their emissions in India," Energy Policy, Elsevier, vol. 108(C), pages 121-133.
    19. Harvey, L.D.D., 2013. "Global climate-oriented transportation scenarios," Energy Policy, Elsevier, vol. 54(C), pages 87-103.
    20. Jun, Seung-Pyo & Yoo, Hyoung Sun & Kim, Ji-Hui, 2016. "A study on the effects of the CAFE standard on consumers," Energy Policy, Elsevier, vol. 91(C), pages 148-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:9:p:4586-4610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.