IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v267y2024ics0925527323003018.html
   My bibliography  Save this article

Managing inventories of reusable containers for food take-away at a restaurant

Author

Listed:
  • Perez Becker, Nicole
  • Arts, Joachim
  • Reichardt, Sven
  • Lange, Anne

Abstract

Single-use packaging in the food services sector accounts for a substantial amount of waste, leading some restaurants to offer customers reusable containers for take-away or delivery orders. Once used, customers may return these containers to the same restaurant or another restaurant in the reusable container network or they may not return them at all. The restaurant hence faces both uncertain demand and returns for reusable containers and needs to decide on the number of containers to stock to serve its customers. We formulate this problem by modeling it as a continuous-time Markov Decision Process. Through a numerical study, we investigate the effect that different balances of demand and return intensities and their coupling have on the average total cost for the restaurant. We find that greater demand and return coupling reduces average costs, but the effects are most beneficial when the overall demand and returns of the restaurant are balanced. The restaurant can reduce costs by optimizing the supplier visit frequency in addition to the inventory level of clean containers after the supplier visit. The supplier’s choice of the level of the visit cost is important as smaller scale restaurants may be penalized by a larger supplier visit cost, dissuading them from participating in reusable container systems.

Suggested Citation

  • Perez Becker, Nicole & Arts, Joachim & Reichardt, Sven & Lange, Anne, 2024. "Managing inventories of reusable containers for food take-away at a restaurant," International Journal of Production Economics, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:proeco:v:267:y:2024:i:c:s0925527323003018
    DOI: 10.1016/j.ijpe.2023.109069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527323003018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2023.109069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tal Raviv & Ofer Kolka, 2013. "Optimal inventory management of a bike-sharing station," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1077-1093.
    2. Manlu Chen & Ming Hu & Jianfu Wang, 2022. "Food Delivery Service and Restaurant: Friend or Foe?," Management Science, INFORMS, vol. 68(9), pages 6539-6551, September.
    3. Glock, C. H. & Kim, T., 2014. "Container management in a single-vendor-multiple-buyer supply chain," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62788, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Kiesmuller, Gudrun P. & van der Laan, Erwin A., 2001. "An inventory model with dependent product demands and returns," International Journal of Production Economics, Elsevier, vol. 72(1), pages 73-87, June.
    5. Glock, C. H., 2017. "Decision support models for managing returnable transport items in supply chains: A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79485, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Pnina Feldman & Andrew E. Frazelle & Robert Swinney, 2023. "Managing Relationships Between Restaurants and Food Delivery Platforms: Conflict, Contracts, and Coordination," Management Science, INFORMS, vol. 69(2), pages 812-823, February.
    7. Gregory A. DeCroix, 2006. "Optimal Policy for a Multiechelon Inventory System with Remanufacturing," Operations Research, INFORMS, vol. 54(3), pages 532-543, June.
    8. Jia Shu & Mabel C. Chou & Qizhang Liu & Chung-Piaw Teo & I-Lin Wang, 2013. "Models for Effective Deployment and Redistribution of Bicycles Within Public Bicycle-Sharing Systems," Operations Research, INFORMS, vol. 61(6), pages 1346-1359, December.
    9. Erwin van der Laan & Marc Salomon & Rommert Dekker & Luk Van Wassenhove, 1999. "Inventory Control in Hybrid Systems with Remanufacturing," Management Science, INFORMS, vol. 45(5), pages 733-747, May.
    10. Paul J. Burke, 1956. "The Output of a Queuing System," Operations Research, INFORMS, vol. 4(6), pages 699-704, December.
    11. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    12. Gregory DeCroix & Jing-Sheng Song & Paul Zipkin, 2005. "A Series System with Returns: Stationary Analysis," Operations Research, INFORMS, vol. 53(2), pages 350-362, April.
    13. Ronald W. Wolff, 1982. "Poisson Arrivals See Time Averages," Operations Research, INFORMS, vol. 30(2), pages 223-231, April.
    14. Sharon Datner & Tal Raviv & Michal Tzur & Daniel Chemla, 2019. "Setting Inventory Levels in a Bike Sharing Network," Service Science, INFORMS, vol. 53(1), pages 62-76, February.
    15. Guide, V. Daniel R. & Srivastava, Rajesh, 1997. "Repairable inventory theory: Models and applications," European Journal of Operational Research, Elsevier, vol. 102(1), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory A. DeCroix, 2006. "Optimal Policy for a Multiechelon Inventory System with Remanufacturing," Operations Research, INFORMS, vol. 54(3), pages 532-543, June.
    2. Gregory A. DeCroix & Jing-Sheng Song & Paul H. Zipkin, 2009. "Managing an Assemble-to-Order System with Returns," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 144-159, October.
    3. Feng, Yan & Viswanathan, S., 2014. "Heuristics with guaranteed performance bounds for a manufacturing system with product recovery," European Journal of Operational Research, Elsevier, vol. 232(2), pages 322-329.
    4. Wei, Cansheng & Li, Yongjian & Cai, Xiaoqiang, 2011. "Robust optimal policies of production and inventory with uncertain returns and demand," International Journal of Production Economics, Elsevier, vol. 134(2), pages 357-367, December.
    5. de Brito, Marisa P. & Dekker, Rommert, 2003. "Modelling product returns in inventory control--exploring the validity of general assumptions," International Journal of Production Economics, Elsevier, vol. 81(1), pages 225-241, January.
    6. Zerhouni, Hichem & Gayon, Jean-Philippe & Frein, Yannick, 2013. "Influence of dependency between demands and returns in a reverse logistics system," International Journal of Production Economics, Elsevier, vol. 143(1), pages 62-71.
    7. Xiting Gong & Xiuli Chao, 2013. "Technical Note---Optimal Control Policy for Capacitated Inventory Systems with Remanufacturing," Operations Research, INFORMS, vol. 61(3), pages 603-611, June.
    8. Ruud H. Teunter, 2001. "Economic ordering quantities for recoverable item inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(6), pages 484-495, September.
    9. Zhou, Li & Naim, Mohamed M. & Ou Tang & Towill, Denis R., 2006. "Dynamic performance of a hybrid inventory system with a Kanban policy in remanufacturing process," Omega, Elsevier, vol. 34(6), pages 585-598, December.
    10. Lin, Yizhong & Leung, Janny M.Y. & Zhang, Lianmin & Gu, Jia-Wen, 2020. "Single-item repairable inventory system with stochastic new and warranty demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    11. Xuanming Su, 2009. "Consumer Returns Policies and Supply Chain Performance," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 595-612, March.
    12. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    13. Gregory A. DeCroix & Paul H. Zipkin, 2005. "Inventory Management for an Assembly System with Product or Component Returns," Management Science, INFORMS, vol. 51(8), pages 1250-1265, August.
    14. Poles, Roberto, 2013. "System Dynamics modelling of a production and inventory system for remanufacturing to evaluate system improvement strategies," International Journal of Production Economics, Elsevier, vol. 144(1), pages 189-199.
    15. Gökbayrak, Esra & Kayış, Enis, 2023. "Single item periodic review inventory control with sales dependent stochastic return flows," International Journal of Production Economics, Elsevier, vol. 255(C).
    16. Sean X. Zhou & Zhijie Tao & Xiuli Chao, 2011. "Optimal Control of Inventory Systems with Multiple Types of Remanufacturable Products," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 20-34, March.
    17. Chen, Qingxin & Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & He, Qiao-Chu, 2023. "A target-based optimization model for bike-sharing systems: From the perspective of service efficiency and equity," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 235-260.
    18. Flapper, Simme Douwe & Gayon, Jean-Philippe & Lim, Lâm Laurent, 2014. "On the optimal control of manufacturing and remanufacturing activities with a single shared server," European Journal of Operational Research, Elsevier, vol. 234(1), pages 86-98.
    19. Kim, Eungab & Saghafian, Soroush & Van Oyen, Mark P., 2013. "Joint control of production, remanufacturing, and disposal activities in a hybrid manufacturing–remanufacturing system," European Journal of Operational Research, Elsevier, vol. 231(2), pages 337-348.
    20. Cai, Xiaoqiang & Lai, Minghui & Li, Xiang & Li, Yongjian & Wu, Xianyi, 2014. "Optimal acquisition and production policy in a hybrid manufacturing/remanufacturing system with core acquisition at different quality levels," European Journal of Operational Research, Elsevier, vol. 233(2), pages 374-382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:267:y:2024:i:c:s0925527323003018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.