IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v635y2024ics0378437123010452.html
   My bibliography  Save this article

Incommensurate fractional-order analysis of a chaotic system based on interaction between dark matter and dark energy with engineering applications

Author

Listed:
  • Calgan, Haris

Abstract

Chaotic systems, characterized by their sensitivity to initial conditions and the presence of deterministic unpredictability, have garnered significant attention in various fields of science and engineering. Researchers have demonstrated a growing interest in recent years in identifying various physical systems as chaotic system, including but not limited to fluid dynamics, electrical circuits, and biological oscillators. In this study, a cosmological chaotic system that portrays the interaction between dark matter and dark energy is examined using incommensurate fractional-order analysis. The effects of incommensurate fractional orders are evaluated by means of phase portraits, bifurcation diagrams and Lyapunov exponents spectra. It is dedicated that wider chaotic regions are observed once the values of these incommensurate fractional orders are changed. Meanwhile, a hidden attractor is found based on the stability analysis and basin of attraction in the incommensurate fractional-order dark matter and dark energy (IFODMDE) chaotic system. These findings highlight the richer dynamic characteristics of the IFODMDE chaotic system. Furthermore, the identified hidden attractor is effectively employed in this study for various engineering applications, including chaos control, random number generator (RNG) design, and image encryption. The analytical results offer a more accurate description of real-world physical phenomena, thanks to the inclusion of incommensurate fractional orders. The application results prove the good randomness of the IFODMDE chaotic system.

Suggested Citation

  • Calgan, Haris, 2024. "Incommensurate fractional-order analysis of a chaotic system based on interaction between dark matter and dark energy with engineering applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
  • Handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437123010452
    DOI: 10.1016/j.physa.2023.129490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010452
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Mengjiao & Liao, Xiaohan & Deng, Yong & Li, Zhijun & Su, Yongxin & Zeng, Yicheng, 2020. "Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Liu, Tianming & Yan, Huizhen & Banerjee, Santo & Mou, Jun, 2021. "A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Li, Xuejun & Mou, Jun & Banerjee, Santo & Wang, Zhisen & Cao, Yinghong, 2022. "Design and DSP implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Ren, Lujie & Mou, Jun & Banerjee, Santo & Zhang, Yushu, 2023. "A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Huang, Pengfei & Chai, Yi & Chen, Xiaolong, 2022. "Multiple dynamics analysis of Lorenz-family systems and the application in signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Hemalatha Mahalingam & Thanikaiselvan Veeramalai & Anirudh Rajiv Menon & Subashanthini S. & Rengarajan Amirtharajan, 2023. "Dual-Domain Image Encryption in Unsecure Medium—A Secure Communication Perspective," Mathematics, MDPI, vol. 11(2), pages 1-23, January.
    8. Chen, Mo & Wang, Ankai & Wang, Chao & Wu, Huagan & Bao, Bocheng, 2022. "DC-offset-induced hidden and asymmetric dynamics in Memristive Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Zhang, Xiaohong & Xu, Jingjing & Moshayedi, Ata Jahangir, 2024. "Design and FPGA implementation of a hyperchaotic conservative circuit with initial offset-boosting and transient transition behavior based on memcapacitor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Hu, Chenyang & Wang, Qiao & Zhang, Xiefu & Tian, Zean & Wu, Xianming, 2022. "A new chaotic system with novel multiple shapes of two-channel attractors," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Jose-Cruz Nuñez-Perez & Vincent-Ademola Adeyemi & Yuma Sandoval-Ibarra & Francisco-Javier Perez-Pinal & Esteban Tlelo-Cuautle, 2021. "Maximizing the Chaotic Behavior of Fractional Order Chen System by Evolutionary Algorithms," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    12. Liu, Tianming & Yan, Huizhen & Banerjee, Santo & Mou, Jun, 2021. "A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Zain-Aldeen S. A. Rahman & Basil H. Jasim & Yasir I. A. Al-Yasir & Yim-Fun Hu & Raed A. Abd-Alhameed & Bilal Naji Alhasnawi, 2021. "A New Fractional-Order Chaotic System with Its Analysis, Synchronization, and Circuit Realization for Secure Communication Applications," Mathematics, MDPI, vol. 9(20), pages 1-25, October.
    14. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Cheage Chamgoué & Alain Francis Talla & Victor Kamgang Kuetche, 2022. "Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-8, June.
    15. Gong, Li-Hua & Luo, Hui-Xin & Wu, Rou-Qing & Zhou, Nan-Run, 2022. "New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    16. Biamou, Arsene Loic Mbanda & Tamba, Victor Kamdoum & Tagne, François Kapche & Takougang, Armand Cyrille Nzeukou, 2024. "Fractional-order-induced symmetric multi-scroll chaotic attractors and double bubble bifurcations in a memristive coupled Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    18. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    19. Zizhao Xie & Jingru Sun & Yiping Tang & Xin Tang & Oluyomi Simpson & Yichuang Sun, 2023. "A K-SVD Based Compressive Sensing Method for Visual Chaotic Image Encryption," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    20. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Alquhayz, Hani & Abdalla, Manal Z.M. & Alhagyan, Mohammed & Gargouri, Ameni & Shoaib, Muhammad, 2023. "Design of intelligent hybrid NAR-GRNN paradigm for fractional order VDP chaotic system in cardiac pacemaker with relaxation oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437123010452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.