IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v11y2023ics2214716023000210.html
   My bibliography  Save this article

Variable Neighborhood Search Algorithm for the Single Assignment Incomplete Hub Location Problem with Modular Capacities and Direct Connections

Author

Listed:
  • AL Athamneh, Raed
  • Tanash, Moayad
  • Bani Hani, Dania
  • Rawshdeh, Mustafa
  • Alawin, Abdallah
  • Albataineh, Zaid

Abstract

In distribution systems such as airlines and express package delivery, the use of hub-and-spoke networks is common, and flow consolidation at hub facilities is essential for cost reduction. While a constant discount factor is typically used to model cost reduction in interhub links, this paper explores an extension of the incomplete hub location problem with modular capacity that enables direct connections between non-hub nodes. The modified approach, called MHLPDC, aims to locate a set of hub facilities, connect each non-hub node to a hub, and activate hub facility links, access arc links, and direct links between non-hub nodes to minimize network costs. The MHLPDC integrates link activation decisions into the decision-making process and utilizes modular arc costs to model the flow dependence of transportation costs in all arcs. To solve the problem, the paper presents a mixed-integer mathematical programming formulation and heuristic algorithm based on a greedy randomized adaptive search and variable neighborhood search approach. The proposed algorithm produces high-quality solutions, as demonstrated through computational experiments on benchmark instances with up to 40 nodes. Furthermore, a sensitivity analysis of the optimal network structure indicates that increasing the discount factor, by varying hub and access arc capacities as well as the associated variable costs, results in fewer hubs being established and more direct shipments between non-hub nodes being permitted.

Suggested Citation

  • AL Athamneh, Raed & Tanash, Moayad & Bani Hani, Dania & Rawshdeh, Mustafa & Alawin, Abdallah & Albataineh, Zaid, 2023. "Variable Neighborhood Search Algorithm for the Single Assignment Incomplete Hub Location Problem with Modular Capacities and Direct Connections," Operations Research Perspectives, Elsevier, vol. 11(C).
  • Handle: RePEc:eee:oprepe:v:11:y:2023:i:c:s2214716023000210
    DOI: 10.1016/j.orp.2023.100286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716023000210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2023.100286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2012. "Exact Solution of Large-Scale Hub Location Problems with Multiple Capacity Levels," Transportation Science, INFORMS, vol. 46(4), pages 439-459, November.
    2. O'Kelly, M. E. & Bryan, D. L., 1998. "Hub location with flow economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 605-616, November.
    3. Martins de Sá, Elisangela & Contreras, Ivan & Cordeau, Jean-François, 2015. "Exact and heuristic algorithms for the design of hub networks with multiple lines," European Journal of Operational Research, Elsevier, vol. 246(1), pages 186-198.
    4. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    5. Ivan Contreras & Moayad Tanash & Navneet Vidyarthi, 2017. "Exact and heuristic approaches for the cycle hub location problem," Annals of Operations Research, Springer, vol. 258(2), pages 655-677, November.
    6. Kara, Bahar Y. & Tansel, Barbaros C., 2000. "On the single-assignment p-hub center problem," European Journal of Operational Research, Elsevier, vol. 125(3), pages 648-655, September.
    7. Labbe, Martine & Laporte, Gilbert & Rodriguez Martin, Inmaculada & Gonzalez, Juan Jose Salazar, 2005. "Locating median cycles in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 457-470, January.
    8. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.
    9. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    10. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
    11. Aykin, Turgut, 1994. "Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem," European Journal of Operational Research, Elsevier, vol. 79(3), pages 501-523, December.
    12. Podnar, Hrvoje & Skorin-Kapov, Jadranka & Skorin-Kapov, Darko, 2002. "Network cost minimization using threshold-based discounting," European Journal of Operational Research, Elsevier, vol. 137(2), pages 371-386, March.
    13. Cunha, Claudio B. & Silva, Marcos Roberto, 2007. "A genetic algorithm for the problem of configuring a hub-and-spoke network for a LTL trucking company in Brazil," European Journal of Operational Research, Elsevier, vol. 179(3), pages 747-758, June.
    14. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    15. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    16. John Klincewicz, 2002. "Enumeration and Search Procedures for a Hub Location Problem with Economies of Scale," Annals of Operations Research, Springer, vol. 110(1), pages 107-122, February.
    17. Alf Kimms, 2006. "Economies of Scale in Hub & Spoke Network Design Models: We Have It All Wrong," Springer Books, in: Martin Morlock & Christoph Schwindt & Norbert Trautmann & Jürgen Zimmermann (ed.), Perspectives on Operations Research, pages 293-317, Springer.
    18. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    19. Ernst, Andreas T. & Krishnamoorthy, Mohan, 1998. "Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 100-112, January.
    20. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    2. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    4. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    5. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    6. Lüer-Villagra, Armin & Marianov, Vladimir, 2013. "A competitive hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 734-744.
    7. Ghaffarinasab, Nader & Çavuş, Özlem & Kara, Bahar Y., 2023. "A mean-CVaR approach to the risk-averse single allocation hub location problem with flow-dependent economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 32-53.
    8. Ghaffarinasab, Nader & Kara, Bahar Y. & Campbell, James F., 2022. "The stratified p-hub center and p-hub maximal covering problems," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 120-148.
    9. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    10. Jayaswal, Sachin & Vidyarthi, Navneet, 2023. "Multiple allocation hub location with service level constraints for two shipment classes," European Journal of Operational Research, Elsevier, vol. 309(2), pages 634-655.
    11. Mehmet R. Taner & Bahar Y. Kara, 2016. "Endogenous Effects of Hubbing on Flow Intensities," Networks and Spatial Economics, Springer, vol. 16(4), pages 1151-1181, December.
    12. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    13. Marc Janschekowitz & Gita Taherkhani & Sibel A. Alumur & Stefan Nickel, 2023. "An alternative approach to address uncertainty in hub location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 359-393, June.
    14. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    15. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Alternate solution approaches for competitive hub location problems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 68-80.
    16. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    17. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    18. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    19. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    20. Najy, Waleed & Diabat, Ali, 2020. "Benders decomposition for multiple-allocation hub-and-spoke network design with economies of scale and node congestion," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 62-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:11:y:2023:i:c:s2214716023000210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.